ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4 Unicode version

Theorem iota4 5298
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )

Proof of Theorem iota4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2080 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 biimpr 130 . . . . . 6  |-  ( (
ph 
<->  x  =  z )  ->  ( x  =  z  ->  ph ) )
32alimi 1501 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  A. x
( x  =  z  ->  ph ) )
4 sb2 1813 . . . . 5  |-  ( A. x ( x  =  z  ->  ph )  ->  [ z  /  x ] ph )
53, 4syl 14 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  [ z  /  x ] ph )
6 iotaval 5290 . . . . . 6  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
76eqcomd 2235 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  z  =  ( iota x ph ) )
8 dfsbcq2 3031 . . . . 5  |-  ( z  =  ( iota x ph )  ->  ( [ z  /  x ] ph 
<-> 
[. ( iota x ph )  /  x ]. ph ) )
97, 8syl 14 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( [ z  /  x ] ph  <->  [. ( iota x ph )  /  x ]. ph ) )
105, 9mpbid 147 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  [. ( iota x ph )  /  x ]. ph )
1110exlimiv 1644 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  [. ( iota x ph )  /  x ]. ph )
121, 11sylbi 121 1  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    = wceq 1395   E.wex 1538   [wsb 1808   E!weu 2077   [.wsbc 3028   iotacio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278
This theorem is referenced by:  iota4an  5299  iotacl  5303
  Copyright terms: Public domain W3C validator