ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4 Unicode version

Theorem iota4 5101
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )

Proof of Theorem iota4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2000 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 bi2 129 . . . . . 6  |-  ( (
ph 
<->  x  =  z )  ->  ( x  =  z  ->  ph ) )
32alimi 1431 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  A. x
( x  =  z  ->  ph ) )
4 sb2 1740 . . . . 5  |-  ( A. x ( x  =  z  ->  ph )  ->  [ z  /  x ] ph )
53, 4syl 14 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  [ z  /  x ] ph )
6 iotaval 5094 . . . . . 6  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
76eqcomd 2143 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  z  =  ( iota x ph ) )
8 dfsbcq2 2907 . . . . 5  |-  ( z  =  ( iota x ph )  ->  ( [ z  /  x ] ph 
<-> 
[. ( iota x ph )  /  x ]. ph ) )
97, 8syl 14 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( [ z  /  x ] ph  <->  [. ( iota x ph )  /  x ]. ph ) )
105, 9mpbid 146 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  [. ( iota x ph )  /  x ]. ph )
1110exlimiv 1577 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  [. ( iota x ph )  /  x ]. ph )
121, 11sylbi 120 1  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1329    = wceq 1331   E.wex 1468   [wsb 1735   E!weu 1997   [.wsbc 2904   iotacio 5081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-sn 3528  df-pr 3529  df-uni 3732  df-iota 5083
This theorem is referenced by:  iota4an  5102  iotacl  5106
  Copyright terms: Public domain W3C validator