| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iota4 | Unicode version | ||
| Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| Ref | Expression |
|---|---|
| iota4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2057 |
. 2
| |
| 2 | biimpr 130 |
. . . . . 6
| |
| 3 | 2 | alimi 1478 |
. . . . 5
|
| 4 | sb2 1790 |
. . . . 5
| |
| 5 | 3, 4 | syl 14 |
. . . 4
|
| 6 | iotaval 5243 |
. . . . . 6
| |
| 7 | 6 | eqcomd 2211 |
. . . . 5
|
| 8 | dfsbcq2 3001 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 5, 9 | mpbid 147 |
. . 3
|
| 11 | 10 | exlimiv 1621 |
. 2
|
| 12 | 1, 11 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 df-iota 5232 |
| This theorem is referenced by: iota4an 5252 iotacl 5256 |
| Copyright terms: Public domain | W3C validator |