ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota4 Unicode version

Theorem iota4 5251
Description: Theorem *14.22 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iota4  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )

Proof of Theorem iota4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2057 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 biimpr 130 . . . . . 6  |-  ( (
ph 
<->  x  =  z )  ->  ( x  =  z  ->  ph ) )
32alimi 1478 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  A. x
( x  =  z  ->  ph ) )
4 sb2 1790 . . . . 5  |-  ( A. x ( x  =  z  ->  ph )  ->  [ z  /  x ] ph )
53, 4syl 14 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  [ z  /  x ] ph )
6 iotaval 5243 . . . . . 6  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
76eqcomd 2211 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  z  =  ( iota x ph ) )
8 dfsbcq2 3001 . . . . 5  |-  ( z  =  ( iota x ph )  ->  ( [ z  /  x ] ph 
<-> 
[. ( iota x ph )  /  x ]. ph ) )
97, 8syl 14 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( [ z  /  x ] ph  <->  [. ( iota x ph )  /  x ]. ph ) )
105, 9mpbid 147 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  [. ( iota x ph )  /  x ]. ph )
1110exlimiv 1621 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  [. ( iota x ph )  /  x ]. ph )
121, 11sylbi 121 1  |-  ( E! x ph  ->  [. ( iota x ph )  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515   [wsb 1785   E!weu 2054   [.wsbc 2998   iotacio 5230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-sn 3639  df-pr 3640  df-uni 3851  df-iota 5232
This theorem is referenced by:  iota4an  5252  iotacl  5256
  Copyright terms: Public domain W3C validator