ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euiotaex Unicode version

Theorem euiotaex 5176
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the  iota class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
euiotaex  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )

Proof of Theorem euiotaex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iotaval 5171 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
21eqcomd 2176 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
32eximi 1593 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y  y  =  ( iota x ph ) )
4 df-eu 2022 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
5 isset 2736 . 2  |-  ( ( iota x ph )  e.  _V  <->  E. y  y  =  ( iota x ph ) )
63, 4, 53imtr4i 200 1  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485   E!weu 2019    e. wcel 2141   _Vcvv 2730   iotacio 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797  df-iota 5160
This theorem is referenced by:  iota4an  5179  funfvex  5513  pcval  12250
  Copyright terms: Public domain W3C validator