Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euiotaex | Unicode version |
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.) |
Ref | Expression |
---|---|
euiotaex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 5181 | . . . 4 | |
2 | 1 | eqcomd 2181 | . . 3 |
3 | 2 | eximi 1598 | . 2 |
4 | df-eu 2027 | . 2 | |
5 | isset 2741 | . 2 | |
6 | 3, 4, 5 | 3imtr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wceq 1353 wex 1490 weu 2024 wcel 2146 cvv 2735 cio 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-sn 3595 df-pr 3596 df-uni 3806 df-iota 5170 |
This theorem is referenced by: iota4an 5189 funfvex 5524 pcval 12263 |
Copyright terms: Public domain | W3C validator |