ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euiotaex Unicode version

Theorem euiotaex 5099
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the  iota class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
euiotaex  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )

Proof of Theorem euiotaex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iotaval 5094 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
21eqcomd 2143 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
32eximi 1579 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y  y  =  ( iota x ph ) )
4 df-eu 2000 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
5 isset 2687 . 2  |-  ( ( iota x ph )  e.  _V  <->  E. y  y  =  ( iota x ph ) )
63, 4, 53imtr4i 200 1  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1329    = wceq 1331   E.wex 1468    e. wcel 1480   E!weu 1997   _Vcvv 2681   iotacio 5081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-sn 3528  df-pr 3529  df-uni 3732  df-iota 5083
This theorem is referenced by:  iota4an  5102  funfvex  5431
  Copyright terms: Public domain W3C validator