Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euiotaex | Unicode version |
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.) |
Ref | Expression |
---|---|
euiotaex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval 5164 | . . . 4 | |
2 | 1 | eqcomd 2171 | . . 3 |
3 | 2 | eximi 1588 | . 2 |
4 | df-eu 2017 | . 2 | |
5 | isset 2732 | . 2 | |
6 | 3, 4, 5 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wex 1480 weu 2014 wcel 2136 cvv 2726 cio 5151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 |
This theorem is referenced by: iota4an 5172 funfvex 5503 pcval 12228 |
Copyright terms: Public domain | W3C validator |