ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euiotaex Unicode version

Theorem euiotaex 5235
Description: Theorem 8.23 in [Quine] p. 58, with existential uniqueness condition added. This theorem proves the existence of the  iota class under our definition. (Contributed by Jim Kingdon, 21-Dec-2018.)
Assertion
Ref Expression
euiotaex  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )

Proof of Theorem euiotaex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iotaval 5230 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  ( iota x ph )  =  y )
21eqcomd 2202 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  y  =  ( iota x ph ) )
32eximi 1614 . 2  |-  ( E. y A. x (
ph 
<->  x  =  y )  ->  E. y  y  =  ( iota x ph ) )
4 df-eu 2048 . 2  |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
5 isset 2769 . 2  |-  ( ( iota x ph )  e.  _V  <->  E. y  y  =  ( iota x ph ) )
63, 4, 53imtr4i 201 1  |-  ( E! x ph  ->  ( iota x ph )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1506   E!weu 2045    e. wcel 2167   _Vcvv 2763   iotacio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840  df-iota 5219
This theorem is referenced by:  iota4an  5239  funfvex  5575  pcval  12465
  Copyright terms: Public domain W3C validator