ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota5 Unicode version

Theorem iota5 5064
Description: A method for computing iota. (Contributed by NM, 17-Sep-2013.)
Hypothesis
Ref Expression
iota5.1  |-  ( (
ph  /\  A  e.  V )  ->  ( ps 
<->  x  =  A ) )
Assertion
Ref Expression
iota5  |-  ( (
ph  /\  A  e.  V )  ->  ( iota x ps )  =  A )
Distinct variable groups:    x, A    x, V    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem iota5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iota5.1 . . 3  |-  ( (
ph  /\  A  e.  V )  ->  ( ps 
<->  x  =  A ) )
21alrimiv 1826 . 2  |-  ( (
ph  /\  A  e.  V )  ->  A. x
( ps  <->  x  =  A ) )
3 eqeq2 2122 . . . . . . 7  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
43bibi2d 231 . . . . . 6  |-  ( y  =  A  ->  (
( ps  <->  x  =  y )  <->  ( ps  <->  x  =  A ) ) )
54albidv 1776 . . . . 5  |-  ( y  =  A  ->  ( A. x ( ps  <->  x  =  y )  <->  A. x
( ps  <->  x  =  A ) ) )
6 eqeq2 2122 . . . . 5  |-  ( y  =  A  ->  (
( iota x ps )  =  y  <->  ( iota x ps )  =  A
) )
75, 6imbi12d 233 . . . 4  |-  ( y  =  A  ->  (
( A. x ( ps  <->  x  =  y
)  ->  ( iota x ps )  =  y )  <->  ( A. x
( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) ) )
8 iotaval 5055 . . . 4  |-  ( A. x ( ps  <->  x  =  y )  ->  ( iota x ps )  =  y )
97, 8vtoclg 2715 . . 3  |-  ( A  e.  V  ->  ( A. x ( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) )
109adantl 273 . 2  |-  ( (
ph  /\  A  e.  V )  ->  ( A. x ( ps  <->  x  =  A )  ->  ( iota x ps )  =  A ) )
112, 10mpd 13 1  |-  ( (
ph  /\  A  e.  V )  ->  ( iota x ps )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1310    = wceq 1312    e. wcel 1461   iotacio 5042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-sn 3497  df-pr 3498  df-uni 3701  df-iota 5044
This theorem is referenced by:  fsum3  11042
  Copyright terms: Public domain W3C validator