| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmabl | Unicode version | ||
| Description: The image of an abelian
group |
| Ref | Expression |
|---|---|
| ghmabl.x |
|
| ghmabl.y |
|
| ghmabl.p |
|
| ghmabl.q |
|
| ghmabl.f |
|
| ghmabl.1 |
|
| ghmabl.3 |
|
| Ref | Expression |
|---|---|
| ghmabl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.f |
. . 3
| |
| 2 | ghmabl.x |
. . 3
| |
| 3 | ghmabl.y |
. . 3
| |
| 4 | ghmabl.p |
. . 3
| |
| 5 | ghmabl.q |
. . 3
| |
| 6 | ghmabl.1 |
. . 3
| |
| 7 | ghmabl.3 |
. . . 4
| |
| 8 | ablgrp 13826 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | 1, 2, 3, 4, 5, 6, 9 | ghmgrp 13655 |
. 2
|
| 11 | ablcmn 13828 |
. . . 4
| |
| 12 | 7, 11 | syl 14 |
. . 3
|
| 13 | 2, 3, 4, 5, 1, 6, 12 | ghmcmn 13864 |
. 2
|
| 14 | isabl 13825 |
. 2
| |
| 15 | 10, 13, 14 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-cmn 13823 df-abl 13824 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |