ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabl GIF version

Theorem isabl 13494
Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
Assertion
Ref Expression
isabl (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))

Proof of Theorem isabl
StepHypRef Expression
1 df-abl 13493 . 2 Abel = (Grp ∩ CMnd)
21elin2 3352 1 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2167  Grpcgrp 13202  CMndccmn 13490  Abelcabl 13491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-abl 13493
This theorem is referenced by:  ablgrp  13495  ablcmn  13497  isabl2  13500  ablpropd  13502  isabld  13505  ghmabl  13534  unitabl  13749
  Copyright terms: Public domain W3C validator