| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isabl | GIF version | ||
| Description: The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.) |
| Ref | Expression |
|---|---|
| isabl | ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-abl 13819 | . 2 ⊢ Abel = (Grp ∩ CMnd) | |
| 2 | 1 | elin2 3392 | 1 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 Grpcgrp 13528 CMndccmn 13816 Abelcabl 13817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-abl 13819 |
| This theorem is referenced by: ablgrp 13821 ablcmn 13823 isabl2 13826 ablpropd 13828 isabld 13831 ghmabl 13860 unitabl 14075 |
| Copyright terms: Public domain | W3C validator |