ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablpropd Unicode version

Theorem ablpropd 12895
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
Hypotheses
Ref Expression
ablpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ablpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ablpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
ablpropd  |-  ( ph  ->  ( K  e.  Abel  <->  L  e.  Abel ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem ablpropd
StepHypRef Expression
1 ablpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 ablpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ablpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3grppropd 12754 . . 3  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
51, 2, 3cmnpropd 12894 . . 3  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
64, 5anbi12d 473 . 2  |-  ( ph  ->  ( ( K  e. 
Grp  /\  K  e. CMnd )  <-> 
( L  e.  Grp  /\  L  e. CMnd ) ) )
7 isabl 12888 . 2  |-  ( K  e.  Abel  <->  ( K  e. 
Grp  /\  K  e. CMnd ) )
8 isabl 12888 . 2  |-  ( L  e.  Abel  <->  ( L  e. 
Grp  /\  L  e. CMnd ) )
96, 7, 83bitr4g 223 1  |-  ( ph  ->  ( K  e.  Abel  <->  L  e.  Abel ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   ` cfv 5208  (class class class)co 5865   Basecbs 12428   +g cplusg 12492   Grpcgrp 12738  CMndccmn 12884   Abelcabl 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-grp 12741  df-cmn 12886  df-abl 12887
This theorem is referenced by:  ablprop  12896
  Copyright terms: Public domain W3C validator