ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablpropd Unicode version

Theorem ablpropd 13574
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
Hypotheses
Ref Expression
ablpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
ablpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
ablpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
ablpropd  |-  ( ph  ->  ( K  e.  Abel  <->  L  e.  Abel ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem ablpropd
StepHypRef Expression
1 ablpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 ablpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 ablpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3grppropd 13291 . . 3  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
51, 2, 3cmnpropd 13573 . . 3  |-  ( ph  ->  ( K  e. CMnd  <->  L  e. CMnd ) )
64, 5anbi12d 473 . 2  |-  ( ph  ->  ( ( K  e. 
Grp  /\  K  e. CMnd )  <-> 
( L  e.  Grp  /\  L  e. CMnd ) ) )
7 isabl 13566 . 2  |-  ( K  e.  Abel  <->  ( K  e. 
Grp  /\  K  e. CMnd ) )
8 isabl 13566 . 2  |-  ( L  e.  Abel  <->  ( L  e. 
Grp  /\  L  e. CMnd ) )
96, 7, 83bitr4g 223 1  |-  ( ph  ->  ( K  e.  Abel  <->  L  e.  Abel ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   Grpcgrp 13274  CMndccmn 13562   Abelcabl 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-cmn 13564  df-abl 13565
This theorem is referenced by:  ablprop  13575  rngpropd  13659  opprrng  13781
  Copyright terms: Public domain W3C validator