ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabld Unicode version

Theorem isabld 13836
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
isabld.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isabld.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isabld.g  |-  ( ph  ->  G  e.  Grp )
isabld.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
Assertion
Ref Expression
isabld  |-  ( ph  ->  G  e.  Abel )
Distinct variable groups:    x, y, B   
x, G, y    ph, x, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem isabld
StepHypRef Expression
1 isabld.g . 2  |-  ( ph  ->  G  e.  Grp )
2 isabld.b . . 3  |-  ( ph  ->  B  =  ( Base `  G ) )
3 isabld.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  G ) )
41grpmndd 13546 . . 3  |-  ( ph  ->  G  e.  Mnd )
5 isabld.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
62, 3, 4, 5iscmnd 13835 . 2  |-  ( ph  ->  G  e. CMnd )
7 isabl 13825 . 2  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
81, 6, 7sylanbrc 417 1  |-  ( ph  ->  G  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   Grpcgrp 13533  CMndccmn 13821   Abelcabl 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-grp 13536  df-cmn 13823  df-abl 13824
This theorem is referenced by:  subgabl  13869  ablressid  13872  ringabl  13995  lmodabl  14298
  Copyright terms: Public domain W3C validator