| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isabld | Unicode version | ||
| Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
| Ref | Expression |
|---|---|
| isabld.b |
|
| isabld.p |
|
| isabld.g |
|
| isabld.c |
|
| Ref | Expression |
|---|---|
| isabld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabld.g |
. 2
| |
| 2 | isabld.b |
. . 3
| |
| 3 | isabld.p |
. . 3
| |
| 4 | 1 | grpmndd 13460 |
. . 3
|
| 5 | isabld.c |
. . 3
| |
| 6 | 2, 3, 4, 5 | iscmnd 13749 |
. 2
|
| 7 | isabl 13739 |
. 2
| |
| 8 | 1, 6, 7 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-grp 13450 df-cmn 13737 df-abl 13738 |
| This theorem is referenced by: subgabl 13783 ablressid 13786 ringabl 13909 lmodabl 14211 |
| Copyright terms: Public domain | W3C validator |