| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isabld | Unicode version | ||
| Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.) |
| Ref | Expression |
|---|---|
| isabld.b |
|
| isabld.p |
|
| isabld.g |
|
| isabld.c |
|
| Ref | Expression |
|---|---|
| isabld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabld.g |
. 2
| |
| 2 | isabld.b |
. . 3
| |
| 3 | isabld.p |
. . 3
| |
| 4 | 1 | grpmndd 13546 |
. . 3
|
| 5 | isabld.c |
. . 3
| |
| 6 | 2, 3, 4, 5 | iscmnd 13835 |
. 2
|
| 7 | isabl 13825 |
. 2
| |
| 8 | 1, 6, 7 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-grp 13536 df-cmn 13823 df-abl 13824 |
| This theorem is referenced by: subgabl 13869 ablressid 13872 ringabl 13995 lmodabl 14298 |
| Copyright terms: Public domain | W3C validator |