ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isabld Unicode version

Theorem isabld 13369
Description: Properties that determine an Abelian group. (Contributed by NM, 6-Aug-2013.)
Hypotheses
Ref Expression
isabld.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isabld.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isabld.g  |-  ( ph  ->  G  e.  Grp )
isabld.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
Assertion
Ref Expression
isabld  |-  ( ph  ->  G  e.  Abel )
Distinct variable groups:    x, y, B   
x, G, y    ph, x, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem isabld
StepHypRef Expression
1 isabld.g . 2  |-  ( ph  ->  G  e.  Grp )
2 isabld.b . . 3  |-  ( ph  ->  B  =  ( Base `  G ) )
3 isabld.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  G ) )
41grpmndd 13085 . . 3  |-  ( ph  ->  G  e.  Mnd )
5 isabld.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
62, 3, 4, 5iscmnd 13368 . 2  |-  ( ph  ->  G  e. CMnd )
7 isabl 13358 . 2  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
81, 6, 7sylanbrc 417 1  |-  ( ph  ->  G  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   Grpcgrp 13072  CMndccmn 13354   Abelcabl 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-grp 13075  df-cmn 13356  df-abl 13357
This theorem is referenced by:  subgabl  13402  ablressid  13405  ringabl  13528  lmodabl  13830
  Copyright terms: Public domain W3C validator