| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issetf | GIF version | ||
| Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| issetf.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| issetf | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 2778 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 2 | issetf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfeq2 2360 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 4 | nfv 1551 | . . 3 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
| 5 | eqeq1 2212 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
| 6 | 3, 4, 5 | cbvex 1779 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) |
| 7 | 1, 6 | bitri 184 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 Ⅎwnfc 2335 Vcvv 2772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: vtoclgf 2831 spcimgft 2849 spcimegft 2851 bj-vtoclgft 15715 |
| Copyright terms: Public domain | W3C validator |