ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetf GIF version

Theorem issetf 2626
Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1 𝑥𝐴
Assertion
Ref Expression
issetf (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)

Proof of Theorem issetf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 isset 2625 . 2 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
2 issetf.1 . . . 4 𝑥𝐴
32nfeq2 2240 . . 3 𝑥 𝑦 = 𝐴
4 nfv 1466 . . 3 𝑦 𝑥 = 𝐴
5 eqeq1 2094 . . 3 (𝑦 = 𝑥 → (𝑦 = 𝐴𝑥 = 𝐴))
63, 4, 5cbvex 1686 . 2 (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴)
71, 6bitri 182 1 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1289  wex 1426  wcel 1438  wnfc 2215  Vcvv 2619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621
This theorem is referenced by:  vtoclgf  2677  spcimgft  2695  spcimegft  2697  bj-vtoclgft  11332
  Copyright terms: Public domain W3C validator