| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issetf | GIF version | ||
| Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| issetf.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| issetf | ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isset 2783 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
| 2 | issetf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfeq2 2362 | . . 3 ⊢ Ⅎ𝑥 𝑦 = 𝐴 |
| 4 | nfv 1552 | . . 3 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
| 5 | eqeq1 2214 | . . 3 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
| 6 | 3, 4, 5 | cbvex 1780 | . 2 ⊢ (∃𝑦 𝑦 = 𝐴 ↔ ∃𝑥 𝑥 = 𝐴) |
| 7 | 1, 6 | bitri 184 | 1 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Ⅎwnfc 2337 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: vtoclgf 2836 spcimgft 2856 spcimegft 2858 bj-vtoclgft 15911 |
| Copyright terms: Public domain | W3C validator |