ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunconstm Unicode version

Theorem iunconstm 3924
Description: Indexed union of a constant class, i.e. where  B does not depend on  x. (Contributed by Jim Kingdon, 15-Aug-2018.)
Assertion
Ref Expression
iunconstm  |-  ( E. x  x  e.  A  ->  U_ x  e.  A  B  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem iunconstm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3920 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
2 r19.9rmv 3542 . . 3  |-  ( E. x  x  e.  A  ->  ( y  e.  B  <->  E. x  e.  A  y  e.  B ) )
31, 2bitr4id 199 . 2  |-  ( E. x  x  e.  A  ->  ( y  e.  U_ x  e.  A  B  <->  y  e.  B ) )
43eqrdv 2194 1  |-  ( E. x  x  e.  A  ->  U_ x  e.  A  B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   U_ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-iun 3918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator