ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunconstm Unicode version

Theorem iunconstm 3952
Description: Indexed union of a constant class, i.e. where  B does not depend on  x. (Contributed by Jim Kingdon, 15-Aug-2018.)
Assertion
Ref Expression
iunconstm  |-  ( E. x  x  e.  A  ->  U_ x  e.  A  B  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem iunconstm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3948 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
2 r19.9rmv 3563 . . 3  |-  ( E. x  x  e.  A  ->  ( y  e.  B  <->  E. x  e.  A  y  e.  B ) )
31, 2bitr4id 199 . 2  |-  ( E. x  x  e.  A  ->  ( y  e.  U_ x  e.  A  B  <->  y  e.  B ) )
43eqrdv 2207 1  |-  ( E. x  x  e.  A  ->  U_ x  e.  A  B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1375   E.wex 1518    e. wcel 2180   E.wrex 2489   U_ciun 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-iun 3946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator