![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iunconstm | GIF version |
Description: Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 15-Aug-2018.) |
Ref | Expression |
---|---|
iunconstm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 3892 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | r19.9rmv 3516 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | bitr4id 199 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐵)) |
4 | 3 | eqrdv 2175 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃wex 1492 ∈ wcel 2148 ∃wrex 2456 ∪ ciun 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-iun 3890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |