ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunconstm GIF version

Theorem iunconstm 3896
Description: Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 15-Aug-2018.)
Assertion
Ref Expression
iunconstm (∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem iunconstm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 3892 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
2 r19.9rmv 3516 . . 3 (∃𝑥 𝑥𝐴 → (𝑦𝐵 ↔ ∃𝑥𝐴 𝑦𝐵))
31, 2bitr4id 199 . 2 (∃𝑥 𝑥𝐴 → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
43eqrdv 2175 1 (∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1492  wcel 2148  wrex 2456   ciun 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-iun 3890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator