Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunconstm | GIF version |
Description: Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 15-Aug-2018.) |
Ref | Expression |
---|---|
iunconstm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 3877 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | r19.9rmv 3506 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | bitr4id 198 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐵)) |
4 | 3 | eqrdv 2168 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 ∪ ciun 3873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-iun 3875 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |