Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunconstm | GIF version |
Description: Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 15-Aug-2018.) |
Ref | Expression |
---|---|
iunconstm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 3870 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | r19.9rmv 3500 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | bitr4id 198 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐵)) |
4 | 3 | eqrdv 2163 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ∃wrex 2445 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-iun 3868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |