| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunconstm | GIF version | ||
| Description: Indexed union of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 15-Aug-2018.) |
| Ref | Expression |
|---|---|
| iunconstm | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 3930 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | r19.9rmv 3551 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
| 3 | 1, 2 | bitr4id 199 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 4 | 3 | eqrdv 2202 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∃wrex 2484 ∪ ciun 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-iun 3928 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |