ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncom4 Unicode version

Theorem iuncom4 3895
Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iuncom4  |-  U_ x  e.  A  U. B  = 
U. U_ x  e.  A  B

Proof of Theorem iuncom4
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2461 . . . . . . 7  |-  ( E. z  e.  B  y  e.  z  <->  E. z
( z  e.  B  /\  y  e.  z
) )
21rexbii 2484 . . . . . 6  |-  ( E. x  e.  A  E. z  e.  B  y  e.  z  <->  E. x  e.  A  E. z ( z  e.  B  /\  y  e.  z ) )
3 rexcom4 2762 . . . . . 6  |-  ( E. x  e.  A  E. z ( z  e.  B  /\  y  e.  z )  <->  E. z E. x  e.  A  ( z  e.  B  /\  y  e.  z
) )
42, 3bitri 184 . . . . 5  |-  ( E. x  e.  A  E. z  e.  B  y  e.  z  <->  E. z E. x  e.  A  ( z  e.  B  /\  y  e.  z ) )
5 r19.41v 2633 . . . . . 6  |-  ( E. x  e.  A  ( z  e.  B  /\  y  e.  z )  <->  ( E. x  e.  A  z  e.  B  /\  y  e.  z )
)
65exbii 1605 . . . . 5  |-  ( E. z E. x  e.  A  ( z  e.  B  /\  y  e.  z )  <->  E. z
( E. x  e.  A  z  e.  B  /\  y  e.  z
) )
74, 6bitri 184 . . . 4  |-  ( E. x  e.  A  E. z  e.  B  y  e.  z  <->  E. z ( E. x  e.  A  z  e.  B  /\  y  e.  z ) )
8 eluni2 3815 . . . . 5  |-  ( y  e.  U. B  <->  E. z  e.  B  y  e.  z )
98rexbii 2484 . . . 4  |-  ( E. x  e.  A  y  e.  U. B  <->  E. x  e.  A  E. z  e.  B  y  e.  z )
10 df-rex 2461 . . . . 5  |-  ( E. z  e.  U_  x  e.  A  B y  e.  z  <->  E. z ( z  e.  U_ x  e.  A  B  /\  y  e.  z ) )
11 eliun 3892 . . . . . . 7  |-  ( z  e.  U_ x  e.  A  B  <->  E. x  e.  A  z  e.  B )
1211anbi1i 458 . . . . . 6  |-  ( ( z  e.  U_ x  e.  A  B  /\  y  e.  z )  <->  ( E. x  e.  A  z  e.  B  /\  y  e.  z )
)
1312exbii 1605 . . . . 5  |-  ( E. z ( z  e. 
U_ x  e.  A  B  /\  y  e.  z )  <->  E. z ( E. x  e.  A  z  e.  B  /\  y  e.  z ) )
1410, 13bitri 184 . . . 4  |-  ( E. z  e.  U_  x  e.  A  B y  e.  z  <->  E. z ( E. x  e.  A  z  e.  B  /\  y  e.  z ) )
157, 9, 143bitr4i 212 . . 3  |-  ( E. x  e.  A  y  e.  U. B  <->  E. z  e.  U_  x  e.  A  B y  e.  z )
16 eliun 3892 . . 3  |-  ( y  e.  U_ x  e.  A  U. B  <->  E. x  e.  A  y  e.  U. B )
17 eluni2 3815 . . 3  |-  ( y  e.  U. U_ x  e.  A  B  <->  E. z  e.  U_  x  e.  A  B y  e.  z )
1815, 16, 173bitr4i 212 . 2  |-  ( y  e.  U_ x  e.  A  U. B  <->  y  e.  U.
U_ x  e.  A  B )
1918eqriv 2174 1  |-  U_ x  e.  A  U. B  = 
U. U_ x  e.  A  B
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   E.wrex 2456   U.cuni 3811   U_ciun 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-uni 3812  df-iun 3890
This theorem is referenced by:  tgidm  13659
  Copyright terms: Public domain W3C validator