| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliun | Unicode version | ||
| Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elex 2774 |
. . 3
| |
| 3 | 2 | rexlimivw 2610 |
. 2
|
| 4 | eleq1 2259 |
. . . 4
| |
| 5 | 4 | rexbidv 2498 |
. . 3
|
| 6 | df-iun 3919 |
. . 3
| |
| 7 | 5, 6 | elab2g 2911 |
. 2
|
| 8 | 1, 3, 7 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-iun 3919 |
| This theorem is referenced by: iuncom 3923 iuncom4 3924 iunconstm 3925 iuniin 3927 iunss1 3928 ss2iun 3932 dfiun2g 3949 ssiun 3959 ssiun2 3960 iunab 3964 iun0 3974 0iun 3975 iunn0m 3978 iunin2 3981 iundif2ss 3983 iindif2m 3985 iunxsng 3993 iunxsngf 3995 iunun 3996 iunxun 3997 iunxiun 3999 iunpwss 4009 disjiun 4029 triun 4145 iunpw 4516 xpiundi 4722 xpiundir 4723 iunxpf 4815 cnvuni 4853 dmiun 4876 dmuni 4877 rniun 5081 dfco2 5170 dfco2a 5171 coiun 5180 fun11iun 5528 imaiun 5810 eluniimadm 5815 opabex3d 6187 opabex3 6188 smoiun 6368 tfrlemi14d 6400 tfr1onlemres 6416 tfrcllemres 6429 wrdval 10955 fsum2dlemstep 11616 fisumcom2 11620 fsumiun 11659 fprod2dlemstep 11804 fprodcom2fi 11808 ennnfonelemrn 12661 ennnfonelemdm 12662 ctiunctlemf 12680 ctiunctlemfo 12681 imasaddfnlemg 13016 lssats2 14046 |
| Copyright terms: Public domain | W3C validator |