| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliun | Unicode version | ||
| Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 |
. 2
| |
| 2 | elex 2785 |
. . 3
| |
| 3 | 2 | rexlimivw 2620 |
. 2
|
| 4 | eleq1 2269 |
. . . 4
| |
| 5 | 4 | rexbidv 2508 |
. . 3
|
| 6 | df-iun 3935 |
. . 3
| |
| 7 | 5, 6 | elab2g 2924 |
. 2
|
| 8 | 1, 3, 7 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-iun 3935 |
| This theorem is referenced by: iuncom 3939 iuncom4 3940 iunconstm 3941 iuniin 3943 iunss1 3944 ss2iun 3948 dfiun2g 3965 ssiun 3975 ssiun2 3976 iunab 3980 iun0 3990 0iun 3991 iunn0m 3994 iunin2 3997 iundif2ss 3999 iindif2m 4001 iunxsng 4009 iunxsngf 4011 iunun 4012 iunxun 4013 iunxiun 4015 iunpwss 4025 disjiun 4046 triun 4163 iunpw 4535 xpiundi 4741 xpiundir 4742 iunxpf 4834 cnvuni 4872 dmiun 4896 dmuni 4897 rniun 5102 dfco2 5191 dfco2a 5192 coiun 5201 fun11iun 5555 imaiun 5842 eluniimadm 5847 opabex3d 6219 opabex3 6220 smoiun 6400 tfrlemi14d 6432 tfr1onlemres 6448 tfrcllemres 6461 wrdval 11019 fsum2dlemstep 11820 fisumcom2 11824 fsumiun 11863 fprod2dlemstep 12008 fprodcom2fi 12012 ennnfonelemrn 12865 ennnfonelemdm 12866 ctiunctlemf 12884 ctiunctlemfo 12885 imasaddfnlemg 13221 lssats2 14251 |
| Copyright terms: Public domain | W3C validator |