| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eliun | Unicode version | ||
| Description: Membership in indexed union. (Contributed by NM, 3-Sep-2003.) |
| Ref | Expression |
|---|---|
| eliun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | elex 2774 |
. . 3
| |
| 3 | 2 | rexlimivw 2610 |
. 2
|
| 4 | eleq1 2259 |
. . . 4
| |
| 5 | 4 | rexbidv 2498 |
. . 3
|
| 6 | df-iun 3918 |
. . 3
| |
| 7 | 5, 6 | elab2g 2911 |
. 2
|
| 8 | 1, 3, 7 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-iun 3918 |
| This theorem is referenced by: iuncom 3922 iuncom4 3923 iunconstm 3924 iuniin 3926 iunss1 3927 ss2iun 3931 dfiun2g 3948 ssiun 3958 ssiun2 3959 iunab 3963 iun0 3973 0iun 3974 iunn0m 3977 iunin2 3980 iundif2ss 3982 iindif2m 3984 iunxsng 3992 iunxsngf 3994 iunun 3995 iunxun 3996 iunxiun 3998 iunpwss 4008 disjiun 4028 triun 4144 iunpw 4515 xpiundi 4721 xpiundir 4722 iunxpf 4814 cnvuni 4852 dmiun 4875 dmuni 4876 rniun 5080 dfco2 5169 dfco2a 5170 coiun 5179 fun11iun 5525 imaiun 5807 eluniimadm 5812 opabex3d 6178 opabex3 6179 smoiun 6359 tfrlemi14d 6391 tfr1onlemres 6407 tfrcllemres 6420 wrdval 10938 fsum2dlemstep 11599 fisumcom2 11603 fsumiun 11642 fprod2dlemstep 11787 fprodcom2fi 11791 ennnfonelemrn 12636 ennnfonelemdm 12637 ctiunctlemf 12655 ctiunctlemfo 12656 imasaddfnlemg 12957 lssats2 13970 |
| Copyright terms: Public domain | W3C validator |