ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunn0m GIF version

Theorem iunn0m 3877
Description: There is an inhabited class in an indexed collection 𝐵(𝑥) iff the indexed union of them is inhabited. (Contributed by Jim Kingdon, 16-Aug-2018.)
Assertion
Ref Expression
iunn0m (∃𝑥𝐴𝑦 𝑦𝐵 ↔ ∃𝑦 𝑦 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunn0m
StepHypRef Expression
1 rexcom4 2710 . 2 (∃𝑥𝐴𝑦 𝑦𝐵 ↔ ∃𝑦𝑥𝐴 𝑦𝐵)
2 eliun 3821 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
32exbii 1585 . 2 (∃𝑦 𝑦 𝑥𝐴 𝐵 ↔ ∃𝑦𝑥𝐴 𝑦𝐵)
41, 3bitr4i 186 1 (∃𝑥𝐴𝑦 𝑦𝐵 ↔ ∃𝑦 𝑦 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104  wex 1469  wcel 1481  wrex 2418   ciun 3817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2689  df-iun 3819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator