ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxsn Unicode version

Theorem iunxsn 3990
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.)
Hypotheses
Ref Expression
iunxsn.1  |-  A  e. 
_V
iunxsn.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
iunxsn  |-  U_ x  e.  { A } B  =  C
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem iunxsn
StepHypRef Expression
1 iunxsn.1 . 2  |-  A  e. 
_V
2 iunxsn.2 . . 3  |-  ( x  =  A  ->  B  =  C )
32iunxsng 3989 . 2  |-  ( A  e.  _V  ->  U_ x  e.  { A } B  =  C )
41, 3ax-mp 5 1  |-  U_ x  e.  { A } B  =  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3619   U_ciun 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-sn 3625  df-iun 3915
This theorem is referenced by:  iunsuc  4452  fsum2dlemstep  11580  fsumiun  11623  fprod2dlemstep  11768
  Copyright terms: Public domain W3C validator