ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxsn Unicode version

Theorem iunxsn 3926
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.)
Hypotheses
Ref Expression
iunxsn.1  |-  A  e. 
_V
iunxsn.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
iunxsn  |-  U_ x  e.  { A } B  =  C
Distinct variable groups:    x, A    x, C
Allowed substitution hint:    B( x)

Proof of Theorem iunxsn
StepHypRef Expression
1 iunxsn.1 . 2  |-  A  e. 
_V
2 iunxsn.2 . . 3  |-  ( x  =  A  ->  B  =  C )
32iunxsng 3925 . 2  |-  ( A  e.  _V  ->  U_ x  e.  { A } B  =  C )
41, 3ax-mp 5 1  |-  U_ x  e.  { A } B  =  C
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335    e. wcel 2128   _Vcvv 2712   {csn 3560   U_ciun 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-sn 3566  df-iun 3852
This theorem is referenced by:  iunsuc  4381  fsum2dlemstep  11335  fsumiun  11378  fprod2dlemstep  11523
  Copyright terms: Public domain W3C validator