ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxsngf Unicode version

Theorem iunxsngf 3990
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
iunxsngf.1  |-  F/_ x C
iunxsngf.2  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
iunxsngf  |-  ( A  e.  V  ->  U_ x  e.  { A } B  =  C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem iunxsngf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3916 . . 3  |-  ( y  e.  U_ x  e. 
{ A } B  <->  E. x  e.  { A } y  e.  B
)
2 rexsns 3657 . . . 4  |-  ( E. x  e.  { A } y  e.  B  <->  [. A  /  x ]. y  e.  B )
3 iunxsngf.1 . . . . . 6  |-  F/_ x C
43nfcri 2330 . . . . 5  |-  F/ x  y  e.  C
5 iunxsngf.2 . . . . . 6  |-  ( x  =  A  ->  B  =  C )
65eleq2d 2263 . . . . 5  |-  ( x  =  A  ->  (
y  e.  B  <->  y  e.  C ) )
74, 6sbciegf 3017 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  C ) )
82, 7bitrid 192 . . 3  |-  ( A  e.  V  ->  ( E. x  e.  { A } y  e.  B  <->  y  e.  C ) )
91, 8bitrid 192 . 2  |-  ( A  e.  V  ->  (
y  e.  U_ x  e.  { A } B  <->  y  e.  C ) )
109eqrdv 2191 1  |-  ( A  e.  V  ->  U_ x  e.  { A } B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   F/_wnfc 2323   E.wrex 2473   [.wsbc 2985   {csn 3618   U_ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-sn 3624  df-iun 3914
This theorem is referenced by:  iunfidisj  7005  iuncld  14283
  Copyright terms: Public domain W3C validator