ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxsng Unicode version

Theorem iunxsng 3992
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.)
Hypothesis
Ref Expression
iunxsng.1  |-  ( x  =  A  ->  B  =  C )
Assertion
Ref Expression
iunxsng  |-  ( A  e.  V  ->  U_ x  e.  { A } B  =  C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem iunxsng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eliun 3920 . . 3  |-  ( y  e.  U_ x  e. 
{ A } B  <->  E. x  e.  { A } y  e.  B
)
2 iunxsng.1 . . . . 5  |-  ( x  =  A  ->  B  =  C )
32eleq2d 2266 . . . 4  |-  ( x  =  A  ->  (
y  e.  B  <->  y  e.  C ) )
43rexsng 3663 . . 3  |-  ( A  e.  V  ->  ( E. x  e.  { A } y  e.  B  <->  y  e.  C ) )
51, 4bitrid 192 . 2  |-  ( A  e.  V  ->  (
y  e.  U_ x  e.  { A } B  <->  y  e.  C ) )
65eqrdv 2194 1  |-  ( A  e.  V  ->  U_ x  e.  { A } B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   E.wrex 2476   {csn 3622   U_ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-sn 3628  df-iun 3918
This theorem is referenced by:  iunxsn  3993  iunxprg  3997  rdgisuc1  6442  oasuc  6522  omsuc  6530
  Copyright terms: Public domain W3C validator