ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq1d Unicode version

Theorem ixpeq1d 6713
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ixpeq1d  |-  ( ph  -> 
X_ x  e.  A  C  =  X_ x  e.  B  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    C( x)

Proof of Theorem ixpeq1d
StepHypRef Expression
1 ixpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 ixpeq1 6712 . 2  |-  ( A  =  B  ->  X_ x  e.  A  C  =  X_ x  e.  B  C
)
31, 2syl 14 1  |-  ( ph  -> 
X_ x  e.  A  C  =  X_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   X_cixp 6701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-fn 5221  df-ixp 6702
This theorem is referenced by:  elixpsn  6738  ixpsnf1o  6739  ptex  12719  prdsex  12724
  Copyright terms: Public domain W3C validator