| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elixpsn | Unicode version | ||
| Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| elixpsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 |
. . . 4
| |
| 2 | 1 | ixpeq1d 6855 |
. . 3
|
| 3 | 2 | eleq2d 2299 |
. 2
|
| 4 | opeq1 3856 |
. . . . 5
| |
| 5 | 4 | sneqd 3679 |
. . . 4
|
| 6 | 5 | eqeq2d 2241 |
. . 3
|
| 7 | 6 | rexbidv 2531 |
. 2
|
| 8 | elex 2811 |
. . 3
| |
| 9 | vex 2802 |
. . . . . . 7
| |
| 10 | vex 2802 |
. . . . . . 7
| |
| 11 | 9, 10 | opex 4314 |
. . . . . 6
|
| 12 | 11 | snex 4268 |
. . . . 5
|
| 13 | eleq1 2292 |
. . . . 5
| |
| 14 | 12, 13 | mpbiri 168 |
. . . 4
|
| 15 | 14 | rexlimivw 2644 |
. . 3
|
| 16 | eleq1 2292 |
. . . 4
| |
| 17 | eqeq1 2236 |
. . . . 5
| |
| 18 | 17 | rexbidv 2531 |
. . . 4
|
| 19 | vex 2802 |
. . . . . 6
| |
| 20 | 19 | elixp 6850 |
. . . . 5
|
| 21 | fveq2 5626 |
. . . . . . . 8
| |
| 22 | 21 | eleq1d 2298 |
. . . . . . 7
|
| 23 | 9, 22 | ralsn 3709 |
. . . . . 6
|
| 24 | 23 | anbi2i 457 |
. . . . 5
|
| 25 | simpl 109 |
. . . . . . . . 9
| |
| 26 | fveq2 5626 |
. . . . . . . . . . . . 13
| |
| 27 | 26 | eleq1d 2298 |
. . . . . . . . . . . 12
|
| 28 | 9, 27 | ralsn 3709 |
. . . . . . . . . . 11
|
| 29 | 28 | biimpri 133 |
. . . . . . . . . 10
|
| 30 | 29 | adantl 277 |
. . . . . . . . 9
|
| 31 | ffnfv 5792 |
. . . . . . . . 9
| |
| 32 | 25, 30, 31 | sylanbrc 417 |
. . . . . . . 8
|
| 33 | 9 | fsn2 5808 |
. . . . . . . 8
|
| 34 | 32, 33 | sylib 122 |
. . . . . . 7
|
| 35 | opeq2 3857 |
. . . . . . . . 9
| |
| 36 | 35 | sneqd 3679 |
. . . . . . . 8
|
| 37 | 36 | rspceeqv 2925 |
. . . . . . 7
|
| 38 | 34, 37 | syl 14 |
. . . . . 6
|
| 39 | 9, 10 | fvsn 5833 |
. . . . . . . . . 10
|
| 40 | id 19 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | eqeltrid 2316 |
. . . . . . . . 9
|
| 42 | 9, 10 | fnsn 5374 |
. . . . . . . . 9
|
| 43 | 41, 42 | jctil 312 |
. . . . . . . 8
|
| 44 | fneq1 5408 |
. . . . . . . . 9
| |
| 45 | fveq1 5625 |
. . . . . . . . . 10
| |
| 46 | 45 | eleq1d 2298 |
. . . . . . . . 9
|
| 47 | 44, 46 | anbi12d 473 |
. . . . . . . 8
|
| 48 | 43, 47 | syl5ibrcom 157 |
. . . . . . 7
|
| 49 | 48 | rexlimiv 2642 |
. . . . . 6
|
| 50 | 38, 49 | impbii 126 |
. . . . 5
|
| 51 | 20, 24, 50 | 3bitri 206 |
. . . 4
|
| 52 | 16, 18, 51 | vtoclbg 2862 |
. . 3
|
| 53 | 8, 15, 52 | pm5.21nii 709 |
. 2
|
| 54 | 3, 7, 53 | vtoclbg 2862 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ixp 6844 |
| This theorem is referenced by: ixpsnf1o 6881 |
| Copyright terms: Public domain | W3C validator |