| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elixpsn | Unicode version | ||
| Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| elixpsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3643 |
. . . 4
| |
| 2 | 1 | ixpeq1d 6796 |
. . 3
|
| 3 | 2 | eleq2d 2274 |
. 2
|
| 4 | opeq1 3818 |
. . . . 5
| |
| 5 | 4 | sneqd 3645 |
. . . 4
|
| 6 | 5 | eqeq2d 2216 |
. . 3
|
| 7 | 6 | rexbidv 2506 |
. 2
|
| 8 | elex 2782 |
. . 3
| |
| 9 | vex 2774 |
. . . . . . 7
| |
| 10 | vex 2774 |
. . . . . . 7
| |
| 11 | 9, 10 | opex 4272 |
. . . . . 6
|
| 12 | 11 | snex 4228 |
. . . . 5
|
| 13 | eleq1 2267 |
. . . . 5
| |
| 14 | 12, 13 | mpbiri 168 |
. . . 4
|
| 15 | 14 | rexlimivw 2618 |
. . 3
|
| 16 | eleq1 2267 |
. . . 4
| |
| 17 | eqeq1 2211 |
. . . . 5
| |
| 18 | 17 | rexbidv 2506 |
. . . 4
|
| 19 | vex 2774 |
. . . . . 6
| |
| 20 | 19 | elixp 6791 |
. . . . 5
|
| 21 | fveq2 5575 |
. . . . . . . 8
| |
| 22 | 21 | eleq1d 2273 |
. . . . . . 7
|
| 23 | 9, 22 | ralsn 3675 |
. . . . . 6
|
| 24 | 23 | anbi2i 457 |
. . . . 5
|
| 25 | simpl 109 |
. . . . . . . . 9
| |
| 26 | fveq2 5575 |
. . . . . . . . . . . . 13
| |
| 27 | 26 | eleq1d 2273 |
. . . . . . . . . . . 12
|
| 28 | 9, 27 | ralsn 3675 |
. . . . . . . . . . 11
|
| 29 | 28 | biimpri 133 |
. . . . . . . . . 10
|
| 30 | 29 | adantl 277 |
. . . . . . . . 9
|
| 31 | ffnfv 5737 |
. . . . . . . . 9
| |
| 32 | 25, 30, 31 | sylanbrc 417 |
. . . . . . . 8
|
| 33 | 9 | fsn2 5753 |
. . . . . . . 8
|
| 34 | 32, 33 | sylib 122 |
. . . . . . 7
|
| 35 | opeq2 3819 |
. . . . . . . . 9
| |
| 36 | 35 | sneqd 3645 |
. . . . . . . 8
|
| 37 | 36 | rspceeqv 2894 |
. . . . . . 7
|
| 38 | 34, 37 | syl 14 |
. . . . . 6
|
| 39 | 9, 10 | fvsn 5778 |
. . . . . . . . . 10
|
| 40 | id 19 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | eqeltrid 2291 |
. . . . . . . . 9
|
| 42 | 9, 10 | fnsn 5327 |
. . . . . . . . 9
|
| 43 | 41, 42 | jctil 312 |
. . . . . . . 8
|
| 44 | fneq1 5361 |
. . . . . . . . 9
| |
| 45 | fveq1 5574 |
. . . . . . . . . 10
| |
| 46 | 45 | eleq1d 2273 |
. . . . . . . . 9
|
| 47 | 44, 46 | anbi12d 473 |
. . . . . . . 8
|
| 48 | 43, 47 | syl5ibrcom 157 |
. . . . . . 7
|
| 49 | 48 | rexlimiv 2616 |
. . . . . 6
|
| 50 | 38, 49 | impbii 126 |
. . . . 5
|
| 51 | 20, 24, 50 | 3bitri 206 |
. . . 4
|
| 52 | 16, 18, 51 | vtoclbg 2833 |
. . 3
|
| 53 | 8, 15, 52 | pm5.21nii 705 |
. 2
|
| 54 | 3, 7, 53 | vtoclbg 2833 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ixp 6785 |
| This theorem is referenced by: ixpsnf1o 6822 |
| Copyright terms: Public domain | W3C validator |