Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elixpsn | Unicode version |
Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
elixpsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3594 | . . . 4 | |
2 | 1 | ixpeq1d 6688 | . . 3 |
3 | 2 | eleq2d 2240 | . 2 |
4 | opeq1 3765 | . . . . 5 | |
5 | 4 | sneqd 3596 | . . . 4 |
6 | 5 | eqeq2d 2182 | . . 3 |
7 | 6 | rexbidv 2471 | . 2 |
8 | elex 2741 | . . 3 | |
9 | vex 2733 | . . . . . . 7 | |
10 | vex 2733 | . . . . . . 7 | |
11 | 9, 10 | opex 4214 | . . . . . 6 |
12 | 11 | snex 4171 | . . . . 5 |
13 | eleq1 2233 | . . . . 5 | |
14 | 12, 13 | mpbiri 167 | . . . 4 |
15 | 14 | rexlimivw 2583 | . . 3 |
16 | eleq1 2233 | . . . 4 | |
17 | eqeq1 2177 | . . . . 5 | |
18 | 17 | rexbidv 2471 | . . . 4 |
19 | vex 2733 | . . . . . 6 | |
20 | 19 | elixp 6683 | . . . . 5 |
21 | fveq2 5496 | . . . . . . . 8 | |
22 | 21 | eleq1d 2239 | . . . . . . 7 |
23 | 9, 22 | ralsn 3626 | . . . . . 6 |
24 | 23 | anbi2i 454 | . . . . 5 |
25 | simpl 108 | . . . . . . . . 9 | |
26 | fveq2 5496 | . . . . . . . . . . . . 13 | |
27 | 26 | eleq1d 2239 | . . . . . . . . . . . 12 |
28 | 9, 27 | ralsn 3626 | . . . . . . . . . . 11 |
29 | 28 | biimpri 132 | . . . . . . . . . 10 |
30 | 29 | adantl 275 | . . . . . . . . 9 |
31 | ffnfv 5654 | . . . . . . . . 9 | |
32 | 25, 30, 31 | sylanbrc 415 | . . . . . . . 8 |
33 | 9 | fsn2 5670 | . . . . . . . 8 |
34 | 32, 33 | sylib 121 | . . . . . . 7 |
35 | opeq2 3766 | . . . . . . . . 9 | |
36 | 35 | sneqd 3596 | . . . . . . . 8 |
37 | 36 | rspceeqv 2852 | . . . . . . 7 |
38 | 34, 37 | syl 14 | . . . . . 6 |
39 | 9, 10 | fvsn 5691 | . . . . . . . . . 10 |
40 | id 19 | . . . . . . . . . 10 | |
41 | 39, 40 | eqeltrid 2257 | . . . . . . . . 9 |
42 | 9, 10 | fnsn 5252 | . . . . . . . . 9 |
43 | 41, 42 | jctil 310 | . . . . . . . 8 |
44 | fneq1 5286 | . . . . . . . . 9 | |
45 | fveq1 5495 | . . . . . . . . . 10 | |
46 | 45 | eleq1d 2239 | . . . . . . . . 9 |
47 | 44, 46 | anbi12d 470 | . . . . . . . 8 |
48 | 43, 47 | syl5ibrcom 156 | . . . . . . 7 |
49 | 48 | rexlimiv 2581 | . . . . . 6 |
50 | 38, 49 | impbii 125 | . . . . 5 |
51 | 20, 24, 50 | 3bitri 205 | . . . 4 |
52 | 16, 18, 51 | vtoclbg 2791 | . . 3 |
53 | 8, 15, 52 | pm5.21nii 699 | . 2 |
54 | 3, 7, 53 | vtoclbg 2791 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 csn 3583 cop 3586 wfn 5193 wf 5194 cfv 5198 cixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ixp 6677 |
This theorem is referenced by: ixpsnf1o 6714 |
Copyright terms: Public domain | W3C validator |