| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elixpsn | Unicode version | ||
| Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| elixpsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3633 |
. . . 4
| |
| 2 | 1 | ixpeq1d 6769 |
. . 3
|
| 3 | 2 | eleq2d 2266 |
. 2
|
| 4 | opeq1 3808 |
. . . . 5
| |
| 5 | 4 | sneqd 3635 |
. . . 4
|
| 6 | 5 | eqeq2d 2208 |
. . 3
|
| 7 | 6 | rexbidv 2498 |
. 2
|
| 8 | elex 2774 |
. . 3
| |
| 9 | vex 2766 |
. . . . . . 7
| |
| 10 | vex 2766 |
. . . . . . 7
| |
| 11 | 9, 10 | opex 4262 |
. . . . . 6
|
| 12 | 11 | snex 4218 |
. . . . 5
|
| 13 | eleq1 2259 |
. . . . 5
| |
| 14 | 12, 13 | mpbiri 168 |
. . . 4
|
| 15 | 14 | rexlimivw 2610 |
. . 3
|
| 16 | eleq1 2259 |
. . . 4
| |
| 17 | eqeq1 2203 |
. . . . 5
| |
| 18 | 17 | rexbidv 2498 |
. . . 4
|
| 19 | vex 2766 |
. . . . . 6
| |
| 20 | 19 | elixp 6764 |
. . . . 5
|
| 21 | fveq2 5558 |
. . . . . . . 8
| |
| 22 | 21 | eleq1d 2265 |
. . . . . . 7
|
| 23 | 9, 22 | ralsn 3665 |
. . . . . 6
|
| 24 | 23 | anbi2i 457 |
. . . . 5
|
| 25 | simpl 109 |
. . . . . . . . 9
| |
| 26 | fveq2 5558 |
. . . . . . . . . . . . 13
| |
| 27 | 26 | eleq1d 2265 |
. . . . . . . . . . . 12
|
| 28 | 9, 27 | ralsn 3665 |
. . . . . . . . . . 11
|
| 29 | 28 | biimpri 133 |
. . . . . . . . . 10
|
| 30 | 29 | adantl 277 |
. . . . . . . . 9
|
| 31 | ffnfv 5720 |
. . . . . . . . 9
| |
| 32 | 25, 30, 31 | sylanbrc 417 |
. . . . . . . 8
|
| 33 | 9 | fsn2 5736 |
. . . . . . . 8
|
| 34 | 32, 33 | sylib 122 |
. . . . . . 7
|
| 35 | opeq2 3809 |
. . . . . . . . 9
| |
| 36 | 35 | sneqd 3635 |
. . . . . . . 8
|
| 37 | 36 | rspceeqv 2886 |
. . . . . . 7
|
| 38 | 34, 37 | syl 14 |
. . . . . 6
|
| 39 | 9, 10 | fvsn 5757 |
. . . . . . . . . 10
|
| 40 | id 19 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | eqeltrid 2283 |
. . . . . . . . 9
|
| 42 | 9, 10 | fnsn 5312 |
. . . . . . . . 9
|
| 43 | 41, 42 | jctil 312 |
. . . . . . . 8
|
| 44 | fneq1 5346 |
. . . . . . . . 9
| |
| 45 | fveq1 5557 |
. . . . . . . . . 10
| |
| 46 | 45 | eleq1d 2265 |
. . . . . . . . 9
|
| 47 | 44, 46 | anbi12d 473 |
. . . . . . . 8
|
| 48 | 43, 47 | syl5ibrcom 157 |
. . . . . . 7
|
| 49 | 48 | rexlimiv 2608 |
. . . . . 6
|
| 50 | 38, 49 | impbii 126 |
. . . . 5
|
| 51 | 20, 24, 50 | 3bitri 206 |
. . . 4
|
| 52 | 16, 18, 51 | vtoclbg 2825 |
. . 3
|
| 53 | 8, 15, 52 | pm5.21nii 705 |
. 2
|
| 54 | 3, 7, 53 | vtoclbg 2825 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ixp 6758 |
| This theorem is referenced by: ixpsnf1o 6795 |
| Copyright terms: Public domain | W3C validator |