Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elixpsn | Unicode version |
Description: Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
elixpsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3587 | . . . 4 | |
2 | 1 | ixpeq1d 6676 | . . 3 |
3 | 2 | eleq2d 2236 | . 2 |
4 | opeq1 3758 | . . . . 5 | |
5 | 4 | sneqd 3589 | . . . 4 |
6 | 5 | eqeq2d 2177 | . . 3 |
7 | 6 | rexbidv 2467 | . 2 |
8 | elex 2737 | . . 3 | |
9 | vex 2729 | . . . . . . 7 | |
10 | vex 2729 | . . . . . . 7 | |
11 | 9, 10 | opex 4207 | . . . . . 6 |
12 | 11 | snex 4164 | . . . . 5 |
13 | eleq1 2229 | . . . . 5 | |
14 | 12, 13 | mpbiri 167 | . . . 4 |
15 | 14 | rexlimivw 2579 | . . 3 |
16 | eleq1 2229 | . . . 4 | |
17 | eqeq1 2172 | . . . . 5 | |
18 | 17 | rexbidv 2467 | . . . 4 |
19 | vex 2729 | . . . . . 6 | |
20 | 19 | elixp 6671 | . . . . 5 |
21 | fveq2 5486 | . . . . . . . 8 | |
22 | 21 | eleq1d 2235 | . . . . . . 7 |
23 | 9, 22 | ralsn 3619 | . . . . . 6 |
24 | 23 | anbi2i 453 | . . . . 5 |
25 | simpl 108 | . . . . . . . . 9 | |
26 | fveq2 5486 | . . . . . . . . . . . . 13 | |
27 | 26 | eleq1d 2235 | . . . . . . . . . . . 12 |
28 | 9, 27 | ralsn 3619 | . . . . . . . . . . 11 |
29 | 28 | biimpri 132 | . . . . . . . . . 10 |
30 | 29 | adantl 275 | . . . . . . . . 9 |
31 | ffnfv 5643 | . . . . . . . . 9 | |
32 | 25, 30, 31 | sylanbrc 414 | . . . . . . . 8 |
33 | 9 | fsn2 5659 | . . . . . . . 8 |
34 | 32, 33 | sylib 121 | . . . . . . 7 |
35 | opeq2 3759 | . . . . . . . . 9 | |
36 | 35 | sneqd 3589 | . . . . . . . 8 |
37 | 36 | rspceeqv 2848 | . . . . . . 7 |
38 | 34, 37 | syl 14 | . . . . . 6 |
39 | 9, 10 | fvsn 5680 | . . . . . . . . . 10 |
40 | id 19 | . . . . . . . . . 10 | |
41 | 39, 40 | eqeltrid 2253 | . . . . . . . . 9 |
42 | 9, 10 | fnsn 5242 | . . . . . . . . 9 |
43 | 41, 42 | jctil 310 | . . . . . . . 8 |
44 | fneq1 5276 | . . . . . . . . 9 | |
45 | fveq1 5485 | . . . . . . . . . 10 | |
46 | 45 | eleq1d 2235 | . . . . . . . . 9 |
47 | 44, 46 | anbi12d 465 | . . . . . . . 8 |
48 | 43, 47 | syl5ibrcom 156 | . . . . . . 7 |
49 | 48 | rexlimiv 2577 | . . . . . 6 |
50 | 38, 49 | impbii 125 | . . . . 5 |
51 | 20, 24, 50 | 3bitri 205 | . . . 4 |
52 | 16, 18, 51 | vtoclbg 2787 | . . 3 |
53 | 8, 15, 52 | pm5.21nii 694 | . 2 |
54 | 3, 7, 53 | vtoclbg 2787 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 cvv 2726 csn 3576 cop 3579 wfn 5183 wf 5184 cfv 5188 cixp 6664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ixp 6665 |
This theorem is referenced by: ixpsnf1o 6702 |
Copyright terms: Public domain | W3C validator |