ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq1d GIF version

Theorem ixpeq1d 6676
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
ixpeq1d (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq1d
StepHypRef Expression
1 ixpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 ixpeq1 6675 . 2 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
31, 2syl 14 1 (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  Xcixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-fn 5191  df-ixp 6665
This theorem is referenced by:  elixpsn  6701  ixpsnf1o  6702
  Copyright terms: Public domain W3C validator