![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixpeq2 | GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
ixpeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ixp 6559 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | |
2 | ss2ixp 6559 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵) | |
3 | 1, 2 | anim12i 334 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) → (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) |
4 | eqss 3078 | . . . 4 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
5 | 4 | ralbii 2415 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) |
6 | r19.26 2532 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) | |
7 | 5, 6 | bitri 183 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) |
8 | eqss 3078 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶 ↔ (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) | |
9 | 3, 7, 8 | 3imtr4i 200 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∀wral 2390 ⊆ wss 3037 Xcixp 6546 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-in 3043 df-ss 3050 df-ixp 6547 |
This theorem is referenced by: ixpeq2dva 6561 ixpintm 6573 |
Copyright terms: Public domain | W3C validator |