| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixpeq2 | GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| ixpeq2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2ixp 6816 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | |
| 2 | ss2ixp 6816 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵) | |
| 3 | 1, 2 | anim12i 338 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) → (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) |
| 4 | eqss 3212 | . . . 4 ⊢ (𝐵 = 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) | |
| 5 | 4 | ralbii 2513 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) |
| 6 | r19.26 2633 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) | |
| 7 | 5, 6 | bitri 184 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵)) |
| 8 | eqss 3212 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶 ↔ (X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶 ∧ X𝑥 ∈ 𝐴 𝐶 ⊆ X𝑥 ∈ 𝐴 𝐵)) | |
| 9 | 3, 7, 8 | 3imtr4i 201 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∀wral 2485 ⊆ wss 3170 Xcixp 6803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-in 3176 df-ss 3183 df-ixp 6804 |
| This theorem is referenced by: ixpeq2dva 6818 ixpintm 6830 prdsbas3 13204 pwsbas 13209 |
| Copyright terms: Public domain | W3C validator |