ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq2 GIF version

Theorem ixpeq2 6771
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)

Proof of Theorem ixpeq2
StepHypRef Expression
1 ss2ixp 6770 . . 3 (∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
2 ss2ixp 6770 . . 3 (∀𝑥𝐴 𝐶𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐵)
31, 2anim12i 338 . 2 ((∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵) → (X𝑥𝐴 𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐶X𝑥𝐴 𝐵))
4 eqss 3198 . . . 4 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
54ralbii 2503 . . 3 (∀𝑥𝐴 𝐵 = 𝐶 ↔ ∀𝑥𝐴 (𝐵𝐶𝐶𝐵))
6 r19.26 2623 . . 3 (∀𝑥𝐴 (𝐵𝐶𝐶𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
75, 6bitri 184 . 2 (∀𝑥𝐴 𝐵 = 𝐶 ↔ (∀𝑥𝐴 𝐵𝐶 ∧ ∀𝑥𝐴 𝐶𝐵))
8 eqss 3198 . 2 (X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶 ↔ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶X𝑥𝐴 𝐶X𝑥𝐴 𝐵))
93, 7, 83imtr4i 201 1 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wral 2475  wss 3157  Xcixp 6757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-in 3163  df-ss 3170  df-ixp 6758
This theorem is referenced by:  ixpeq2dva  6772  ixpintm  6784
  Copyright terms: Public domain W3C validator