ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctild Unicode version

Theorem jctild 316
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctild.1  |-  ( ph  ->  ( ps  ->  ch ) )
jctild.2  |-  ( ph  ->  th )
Assertion
Ref Expression
jctild  |-  ( ph  ->  ( ps  ->  ( th  /\  ch ) ) )

Proof of Theorem jctild
StepHypRef Expression
1 jctild.2 . . 3  |-  ( ph  ->  th )
21a1d 22 . 2  |-  ( ph  ->  ( ps  ->  th )
)
3 jctild.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
42, 3jcad 307 1  |-  ( ph  ->  ( ps  ->  ( th  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  anc2li  329  syl6an  1434  poxp  6235  ssenen  6853  aptiprleml  7640  zmulcl  9308  rexuz3  11001  cau3lem  11125  gcdzeq  12025  isprm3  12120  epttop  13675  lmtopcnp  13835  txcnp  13856
  Copyright terms: Public domain W3C validator