| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > jctild | Unicode version | ||
| Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) | 
| Ref | Expression | 
|---|---|
| jctild.1 | 
 | 
| jctild.2 | 
 | 
| Ref | Expression | 
|---|---|
| jctild | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jctild.2 | 
. . 3
 | |
| 2 | 1 | a1d 22 | 
. 2
 | 
| 3 | jctild.1 | 
. 2
 | |
| 4 | 2, 3 | jcad 307 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 | 
| This theorem is referenced by: anc2li 329 syl6an 1445 poxp 6290 ssenen 6912 aptiprleml 7706 zmulcl 9379 rexuz3 11155 cau3lem 11279 gcdzeq 12189 isprm3 12286 epttop 14326 lmtopcnp 14486 txcnp 14507 | 
| Copyright terms: Public domain | W3C validator |