Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jctild | Unicode version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | |
jctild.2 |
Ref | Expression |
---|---|
jctild |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 | |
2 | 1 | a1d 22 | . 2 |
3 | jctild.1 | . 2 | |
4 | 2, 3 | jcad 305 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: anc2li 327 syl6an 1427 poxp 6211 ssenen 6829 aptiprleml 7601 zmulcl 9265 rexuz3 10954 cau3lem 11078 gcdzeq 11977 isprm3 12072 epttop 12884 lmtopcnp 13044 txcnp 13065 |
Copyright terms: Public domain | W3C validator |