| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmulcl | Unicode version | ||
| Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| zmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 9461 |
. 2
| |
| 2 | elznn0 9461 |
. 2
| |
| 3 | nn0mulcl 9405 |
. . . . . . . . 9
| |
| 4 | 3 | orcd 738 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | remulcl 8127 |
. . . . . . 7
| |
| 7 | 5, 6 | jctild 316 |
. . . . . 6
|
| 8 | nn0mulcl 9405 |
. . . . . . . . 9
| |
| 9 | recn 8132 |
. . . . . . . . . . 11
| |
| 10 | recn 8132 |
. . . . . . . . . . 11
| |
| 11 | mulneg1 8541 |
. . . . . . . . . . 11
| |
| 12 | 9, 10, 11 | syl2an 289 |
. . . . . . . . . 10
|
| 13 | 12 | eleq1d 2298 |
. . . . . . . . 9
|
| 14 | 8, 13 | imbitrid 154 |
. . . . . . . 8
|
| 15 | olc 716 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6 33 |
. . . . . . 7
|
| 17 | 16, 6 | jctild 316 |
. . . . . 6
|
| 18 | nn0mulcl 9405 |
. . . . . . . . 9
| |
| 19 | mulneg2 8542 |
. . . . . . . . . . 11
| |
| 20 | 9, 10, 19 | syl2an 289 |
. . . . . . . . . 10
|
| 21 | 20 | eleq1d 2298 |
. . . . . . . . 9
|
| 22 | 18, 21 | imbitrid 154 |
. . . . . . . 8
|
| 23 | 22, 15 | syl6 33 |
. . . . . . 7
|
| 24 | 23, 6 | jctild 316 |
. . . . . 6
|
| 25 | nn0mulcl 9405 |
. . . . . . . . 9
| |
| 26 | mul2neg 8544 |
. . . . . . . . . . 11
| |
| 27 | 9, 10, 26 | syl2an 289 |
. . . . . . . . . 10
|
| 28 | 27 | eleq1d 2298 |
. . . . . . . . 9
|
| 29 | 25, 28 | imbitrid 154 |
. . . . . . . 8
|
| 30 | orc 717 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl6 33 |
. . . . . . 7
|
| 32 | 31, 6 | jctild 316 |
. . . . . 6
|
| 33 | 7, 17, 24, 32 | ccased 971 |
. . . . 5
|
| 34 | elznn0 9461 |
. . . . 5
| |
| 35 | 33, 34 | imbitrrdi 162 |
. . . 4
|
| 36 | 35 | imp 124 |
. . 3
|
| 37 | 36 | an4s 590 |
. 2
|
| 38 | 1, 2, 37 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: zdivmul 9537 msqznn 9547 zmulcld 9575 uz2mulcl 9803 qaddcl 9830 qmulcl 9832 qreccl 9837 fzctr 10329 flqmulnn0 10519 zexpcl 10776 iexpcyc 10866 zesq 10880 fprodzcl 12120 dvdsmul1 12324 dvdsmul2 12325 muldvds1 12327 muldvds2 12328 dvdscmul 12329 dvdsmulc 12330 dvds2ln 12335 dvdstr 12339 dvdsmultr1 12342 dvdsmultr2 12344 3dvdsdec 12376 3dvds2dec 12377 oexpneg 12388 mulsucdiv2z 12396 divalgb 12436 divalgmod 12438 ndvdsi 12444 absmulgcd 12538 gcdmultiple 12541 gcdmultiplez 12542 dvdsmulgcd 12546 rpmulgcd 12547 lcmcllem 12589 rpmul 12620 cncongr1 12625 cncongr2 12626 modprminv 12772 modprminveq 12773 modprm0 12777 pythagtriplem4 12791 pcpremul 12816 pcmul 12824 gzmulcl 12901 zsubrg 14545 dvdsrzring 14567 mulgrhm 14573 znidom 14621 znunit 14623 lgslem3 15681 lgsval 15683 lgsval2lem 15689 lgsval4a 15701 lgsneg 15703 lgsdir2 15712 lgsdir 15714 lgsdilem2 15715 lgsdi 15716 lgsne0 15717 lgseisenlem1 15749 lgseisenlem2 15750 lgseisenlem3 15751 lgsquadlem1 15756 lgsquad2lem2 15761 2lgsoddprmlem2 15785 |
| Copyright terms: Public domain | W3C validator |