| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmulcl | Unicode version | ||
| Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| zmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 9389 |
. 2
| |
| 2 | elznn0 9389 |
. 2
| |
| 3 | nn0mulcl 9333 |
. . . . . . . . 9
| |
| 4 | 3 | orcd 735 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | remulcl 8055 |
. . . . . . 7
| |
| 7 | 5, 6 | jctild 316 |
. . . . . 6
|
| 8 | nn0mulcl 9333 |
. . . . . . . . 9
| |
| 9 | recn 8060 |
. . . . . . . . . . 11
| |
| 10 | recn 8060 |
. . . . . . . . . . 11
| |
| 11 | mulneg1 8469 |
. . . . . . . . . . 11
| |
| 12 | 9, 10, 11 | syl2an 289 |
. . . . . . . . . 10
|
| 13 | 12 | eleq1d 2274 |
. . . . . . . . 9
|
| 14 | 8, 13 | imbitrid 154 |
. . . . . . . 8
|
| 15 | olc 713 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6 33 |
. . . . . . 7
|
| 17 | 16, 6 | jctild 316 |
. . . . . 6
|
| 18 | nn0mulcl 9333 |
. . . . . . . . 9
| |
| 19 | mulneg2 8470 |
. . . . . . . . . . 11
| |
| 20 | 9, 10, 19 | syl2an 289 |
. . . . . . . . . 10
|
| 21 | 20 | eleq1d 2274 |
. . . . . . . . 9
|
| 22 | 18, 21 | imbitrid 154 |
. . . . . . . 8
|
| 23 | 22, 15 | syl6 33 |
. . . . . . 7
|
| 24 | 23, 6 | jctild 316 |
. . . . . 6
|
| 25 | nn0mulcl 9333 |
. . . . . . . . 9
| |
| 26 | mul2neg 8472 |
. . . . . . . . . . 11
| |
| 27 | 9, 10, 26 | syl2an 289 |
. . . . . . . . . 10
|
| 28 | 27 | eleq1d 2274 |
. . . . . . . . 9
|
| 29 | 25, 28 | imbitrid 154 |
. . . . . . . 8
|
| 30 | orc 714 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl6 33 |
. . . . . . 7
|
| 32 | 31, 6 | jctild 316 |
. . . . . 6
|
| 33 | 7, 17, 24, 32 | ccased 968 |
. . . . 5
|
| 34 | elznn0 9389 |
. . . . 5
| |
| 35 | 33, 34 | imbitrrdi 162 |
. . . 4
|
| 36 | 35 | imp 124 |
. . 3
|
| 37 | 36 | an4s 588 |
. 2
|
| 38 | 1, 2, 37 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 |
| This theorem is referenced by: zdivmul 9465 msqznn 9475 zmulcld 9503 uz2mulcl 9731 qaddcl 9758 qmulcl 9760 qreccl 9765 fzctr 10257 flqmulnn0 10444 zexpcl 10701 iexpcyc 10791 zesq 10805 fprodzcl 11953 dvdsmul1 12157 dvdsmul2 12158 muldvds1 12160 muldvds2 12161 dvdscmul 12162 dvdsmulc 12163 dvds2ln 12168 dvdstr 12172 dvdsmultr1 12175 dvdsmultr2 12177 3dvdsdec 12209 3dvds2dec 12210 oexpneg 12221 mulsucdiv2z 12229 divalgb 12269 divalgmod 12271 ndvdsi 12277 absmulgcd 12371 gcdmultiple 12374 gcdmultiplez 12375 dvdsmulgcd 12379 rpmulgcd 12380 lcmcllem 12422 rpmul 12453 cncongr1 12458 cncongr2 12459 modprminv 12605 modprminveq 12606 modprm0 12610 pythagtriplem4 12624 pcpremul 12649 pcmul 12657 gzmulcl 12734 zsubrg 14376 dvdsrzring 14398 mulgrhm 14404 znidom 14452 znunit 14454 lgslem3 15512 lgsval 15514 lgsval2lem 15520 lgsval4a 15532 lgsneg 15534 lgsdir2 15543 lgsdir 15545 lgsdilem2 15546 lgsdi 15547 lgsne0 15548 lgseisenlem1 15580 lgseisenlem2 15581 lgseisenlem3 15582 lgsquadlem1 15587 lgsquad2lem2 15592 2lgsoddprmlem2 15616 |
| Copyright terms: Public domain | W3C validator |