| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmulcl | Unicode version | ||
| Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| zmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 9422 |
. 2
| |
| 2 | elznn0 9422 |
. 2
| |
| 3 | nn0mulcl 9366 |
. . . . . . . . 9
| |
| 4 | 3 | orcd 735 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | remulcl 8088 |
. . . . . . 7
| |
| 7 | 5, 6 | jctild 316 |
. . . . . 6
|
| 8 | nn0mulcl 9366 |
. . . . . . . . 9
| |
| 9 | recn 8093 |
. . . . . . . . . . 11
| |
| 10 | recn 8093 |
. . . . . . . . . . 11
| |
| 11 | mulneg1 8502 |
. . . . . . . . . . 11
| |
| 12 | 9, 10, 11 | syl2an 289 |
. . . . . . . . . 10
|
| 13 | 12 | eleq1d 2276 |
. . . . . . . . 9
|
| 14 | 8, 13 | imbitrid 154 |
. . . . . . . 8
|
| 15 | olc 713 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6 33 |
. . . . . . 7
|
| 17 | 16, 6 | jctild 316 |
. . . . . 6
|
| 18 | nn0mulcl 9366 |
. . . . . . . . 9
| |
| 19 | mulneg2 8503 |
. . . . . . . . . . 11
| |
| 20 | 9, 10, 19 | syl2an 289 |
. . . . . . . . . 10
|
| 21 | 20 | eleq1d 2276 |
. . . . . . . . 9
|
| 22 | 18, 21 | imbitrid 154 |
. . . . . . . 8
|
| 23 | 22, 15 | syl6 33 |
. . . . . . 7
|
| 24 | 23, 6 | jctild 316 |
. . . . . 6
|
| 25 | nn0mulcl 9366 |
. . . . . . . . 9
| |
| 26 | mul2neg 8505 |
. . . . . . . . . . 11
| |
| 27 | 9, 10, 26 | syl2an 289 |
. . . . . . . . . 10
|
| 28 | 27 | eleq1d 2276 |
. . . . . . . . 9
|
| 29 | 25, 28 | imbitrid 154 |
. . . . . . . 8
|
| 30 | orc 714 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl6 33 |
. . . . . . 7
|
| 32 | 31, 6 | jctild 316 |
. . . . . 6
|
| 33 | 7, 17, 24, 32 | ccased 968 |
. . . . 5
|
| 34 | elznn0 9422 |
. . . . 5
| |
| 35 | 33, 34 | imbitrrdi 162 |
. . . 4
|
| 36 | 35 | imp 124 |
. . 3
|
| 37 | 36 | an4s 588 |
. 2
|
| 38 | 1, 2, 37 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: zdivmul 9498 msqznn 9508 zmulcld 9536 uz2mulcl 9764 qaddcl 9791 qmulcl 9793 qreccl 9798 fzctr 10290 flqmulnn0 10479 zexpcl 10736 iexpcyc 10826 zesq 10840 fprodzcl 12035 dvdsmul1 12239 dvdsmul2 12240 muldvds1 12242 muldvds2 12243 dvdscmul 12244 dvdsmulc 12245 dvds2ln 12250 dvdstr 12254 dvdsmultr1 12257 dvdsmultr2 12259 3dvdsdec 12291 3dvds2dec 12292 oexpneg 12303 mulsucdiv2z 12311 divalgb 12351 divalgmod 12353 ndvdsi 12359 absmulgcd 12453 gcdmultiple 12456 gcdmultiplez 12457 dvdsmulgcd 12461 rpmulgcd 12462 lcmcllem 12504 rpmul 12535 cncongr1 12540 cncongr2 12541 modprminv 12687 modprminveq 12688 modprm0 12692 pythagtriplem4 12706 pcpremul 12731 pcmul 12739 gzmulcl 12816 zsubrg 14458 dvdsrzring 14480 mulgrhm 14486 znidom 14534 znunit 14536 lgslem3 15594 lgsval 15596 lgsval2lem 15602 lgsval4a 15614 lgsneg 15616 lgsdir2 15625 lgsdir 15627 lgsdilem2 15628 lgsdi 15629 lgsne0 15630 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgsquadlem1 15669 lgsquad2lem2 15674 2lgsoddprmlem2 15698 |
| Copyright terms: Public domain | W3C validator |