ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmulcl Unicode version

Theorem zmulcl 8864
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
zmulcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )

Proof of Theorem zmulcl
StepHypRef Expression
1 elznn0 8826 . 2  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) ) )
2 elznn0 8826 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
3 nn0mulcl 8770 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
43orcd 688 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
)
54a1i 9 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) )
6 remulcl 7531 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  x.  N
)  e.  RR )
75, 6jctild 310 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) ) )
8 nn0mulcl 8770 . . . . . . . . 9  |-  ( (
-u M  e.  NN0  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  e.  NN0 )
9 recn 7536 . . . . . . . . . . 11  |-  ( M  e.  RR  ->  M  e.  CC )
10 recn 7536 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  N  e.  CC )
11 mulneg1 7934 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
129, 10, 11syl2an 284 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
1312eleq1d 2157 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  x.  N )  e.  NN0  <->  -u ( M  x.  N )  e.  NN0 ) )
148, 13syl5ib 153 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  -u ( M  x.  N )  e.  NN0 ) )
15 olc 668 . . . . . . . 8  |-  ( -u ( M  x.  N
)  e.  NN0  ->  ( ( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
)
1614, 15syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
1716, 6jctild 310 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
18 nn0mulcl 8770 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( M  x.  -u N
)  e.  NN0 )
19 mulneg2 7935 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  x.  -u N
)  =  -u ( M  x.  N )
)
209, 10, 19syl2an 284 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  x.  -u N
)  =  -u ( M  x.  N )
)
2120eleq1d 2157 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  x.  -u N )  e.  NN0  <->  -u ( M  x.  N )  e.  NN0 ) )
2218, 21syl5ib 153 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  -u ( M  x.  N )  e.  NN0 ) )
2322, 15syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
2423, 6jctild 310 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
25 nn0mulcl 8770 . . . . . . . . 9  |-  ( (
-u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( -u M  x.  -u N )  e. 
NN0 )
26 mul2neg 7937 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( -u M  x.  -u N )  =  ( M  x.  N ) )
279, 10, 26syl2an 284 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( -u M  x.  -u N )  =  ( M  x.  N ) )
2827eleq1d 2157 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  x.  -u N )  e. 
NN0 
<->  ( M  x.  N
)  e.  NN0 )
)
2925, 28syl5ib 153 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( M  x.  N )  e.  NN0 ) )
30 orc 669 . . . . . . . 8  |-  ( ( M  x.  N )  e.  NN0  ->  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) )
3129, 30syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
3231, 6jctild 310 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
337, 17, 24, 32ccased 912 . . . . 5  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
34 elznn0 8826 . . . . 5  |-  ( ( M  x.  N )  e.  ZZ  <->  ( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) )
3533, 34syl6ibr 161 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  -> 
( M  x.  N
)  e.  ZZ ) )
3635imp 123 . . 3  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )  ->  ( M  x.  N )  e.  ZZ )
3736an4s 556 . 2  |-  ( ( ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) )  /\  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )  ->  ( M  x.  N )  e.  ZZ )
381, 2, 37syl2anb 286 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 665    = wceq 1290    e. wcel 1439  (class class class)co 5666   CCcc 7409   RRcr 7410    x. cmul 7416   -ucneg 7715   NN0cn0 8734   ZZcz 8811
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812
This theorem is referenced by:  zdivmul  8897  msqznn  8907  zmulcld  8935  uz2mulcl  9156  qaddcl  9181  qmulcl  9183  qreccl  9188  fzctr  9605  flqmulnn0  9767  zexpcl  10031  iexpcyc  10120  zesq  10133  dvdsmul1  11157  dvdsmul2  11158  muldvds1  11160  muldvds2  11161  dvdscmul  11162  dvdsmulc  11163  dvds2ln  11168  dvdstr  11172  dvdsmultr1  11173  dvdsmultr2  11175  3dvdsdec  11204  3dvds2dec  11205  oexpneg  11216  mulsucdiv2z  11224  divalgb  11264  divalgmod  11266  ndvdsi  11272  absmulgcd  11345  gcdmultiple  11348  gcdmultiplez  11349  dvdsmulgcd  11353  rpmulgcd  11354  lcmcllem  11388  rpmul  11419  cncongr1  11424  cncongr2  11425
  Copyright terms: Public domain W3C validator