ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmulcl Unicode version

Theorem zmulcl 9114
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
zmulcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )

Proof of Theorem zmulcl
StepHypRef Expression
1 elznn0 9076 . 2  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) ) )
2 elznn0 9076 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
3 nn0mulcl 9020 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
43orcd 722 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
)
54a1i 9 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) )
6 remulcl 7755 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  x.  N
)  e.  RR )
75, 6jctild 314 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) ) )
8 nn0mulcl 9020 . . . . . . . . 9  |-  ( (
-u M  e.  NN0  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  e.  NN0 )
9 recn 7760 . . . . . . . . . . 11  |-  ( M  e.  RR  ->  M  e.  CC )
10 recn 7760 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  N  e.  CC )
11 mulneg1 8164 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
129, 10, 11syl2an 287 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
1312eleq1d 2208 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  x.  N )  e.  NN0  <->  -u ( M  x.  N )  e.  NN0 ) )
148, 13syl5ib 153 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  -u ( M  x.  N )  e.  NN0 ) )
15 olc 700 . . . . . . . 8  |-  ( -u ( M  x.  N
)  e.  NN0  ->  ( ( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
)
1614, 15syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
1716, 6jctild 314 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
18 nn0mulcl 9020 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( M  x.  -u N
)  e.  NN0 )
19 mulneg2 8165 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  x.  -u N
)  =  -u ( M  x.  N )
)
209, 10, 19syl2an 287 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  x.  -u N
)  =  -u ( M  x.  N )
)
2120eleq1d 2208 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  x.  -u N )  e.  NN0  <->  -u ( M  x.  N )  e.  NN0 ) )
2218, 21syl5ib 153 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  -u ( M  x.  N )  e.  NN0 ) )
2322, 15syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
2423, 6jctild 314 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
25 nn0mulcl 9020 . . . . . . . . 9  |-  ( (
-u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( -u M  x.  -u N )  e. 
NN0 )
26 mul2neg 8167 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( -u M  x.  -u N )  =  ( M  x.  N ) )
279, 10, 26syl2an 287 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( -u M  x.  -u N )  =  ( M  x.  N ) )
2827eleq1d 2208 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  x.  -u N )  e. 
NN0 
<->  ( M  x.  N
)  e.  NN0 )
)
2925, 28syl5ib 153 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( M  x.  N )  e.  NN0 ) )
30 orc 701 . . . . . . . 8  |-  ( ( M  x.  N )  e.  NN0  ->  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) )
3129, 30syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
3231, 6jctild 314 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
337, 17, 24, 32ccased 949 . . . . 5  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
34 elznn0 9076 . . . . 5  |-  ( ( M  x.  N )  e.  ZZ  <->  ( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) )
3533, 34syl6ibr 161 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  -> 
( M  x.  N
)  e.  ZZ ) )
3635imp 123 . . 3  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )  ->  ( M  x.  N )  e.  ZZ )
3736an4s 577 . 2  |-  ( ( ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) )  /\  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )  ->  ( M  x.  N )  e.  ZZ )
381, 2, 37syl2anb 289 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7625   RRcr 7626    x. cmul 7632   -ucneg 7941   NN0cn0 8984   ZZcz 9061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062
This theorem is referenced by:  zdivmul  9148  msqznn  9158  zmulcld  9186  uz2mulcl  9409  qaddcl  9434  qmulcl  9436  qreccl  9441  fzctr  9917  flqmulnn0  10079  zexpcl  10315  iexpcyc  10404  zesq  10417  dvdsmul1  11521  dvdsmul2  11522  muldvds1  11524  muldvds2  11525  dvdscmul  11526  dvdsmulc  11527  dvds2ln  11532  dvdstr  11536  dvdsmultr1  11537  dvdsmultr2  11539  3dvdsdec  11568  3dvds2dec  11569  oexpneg  11580  mulsucdiv2z  11588  divalgb  11628  divalgmod  11630  ndvdsi  11636  absmulgcd  11711  gcdmultiple  11714  gcdmultiplez  11715  dvdsmulgcd  11719  rpmulgcd  11720  lcmcllem  11754  rpmul  11785  cncongr1  11790  cncongr2  11791
  Copyright terms: Public domain W3C validator