| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmulcl | Unicode version | ||
| Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| zmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 9387 |
. 2
| |
| 2 | elznn0 9387 |
. 2
| |
| 3 | nn0mulcl 9331 |
. . . . . . . . 9
| |
| 4 | 3 | orcd 735 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | remulcl 8053 |
. . . . . . 7
| |
| 7 | 5, 6 | jctild 316 |
. . . . . 6
|
| 8 | nn0mulcl 9331 |
. . . . . . . . 9
| |
| 9 | recn 8058 |
. . . . . . . . . . 11
| |
| 10 | recn 8058 |
. . . . . . . . . . 11
| |
| 11 | mulneg1 8467 |
. . . . . . . . . . 11
| |
| 12 | 9, 10, 11 | syl2an 289 |
. . . . . . . . . 10
|
| 13 | 12 | eleq1d 2274 |
. . . . . . . . 9
|
| 14 | 8, 13 | imbitrid 154 |
. . . . . . . 8
|
| 15 | olc 713 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6 33 |
. . . . . . 7
|
| 17 | 16, 6 | jctild 316 |
. . . . . 6
|
| 18 | nn0mulcl 9331 |
. . . . . . . . 9
| |
| 19 | mulneg2 8468 |
. . . . . . . . . . 11
| |
| 20 | 9, 10, 19 | syl2an 289 |
. . . . . . . . . 10
|
| 21 | 20 | eleq1d 2274 |
. . . . . . . . 9
|
| 22 | 18, 21 | imbitrid 154 |
. . . . . . . 8
|
| 23 | 22, 15 | syl6 33 |
. . . . . . 7
|
| 24 | 23, 6 | jctild 316 |
. . . . . 6
|
| 25 | nn0mulcl 9331 |
. . . . . . . . 9
| |
| 26 | mul2neg 8470 |
. . . . . . . . . . 11
| |
| 27 | 9, 10, 26 | syl2an 289 |
. . . . . . . . . 10
|
| 28 | 27 | eleq1d 2274 |
. . . . . . . . 9
|
| 29 | 25, 28 | imbitrid 154 |
. . . . . . . 8
|
| 30 | orc 714 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl6 33 |
. . . . . . 7
|
| 32 | 31, 6 | jctild 316 |
. . . . . 6
|
| 33 | 7, 17, 24, 32 | ccased 968 |
. . . . 5
|
| 34 | elznn0 9387 |
. . . . 5
| |
| 35 | 33, 34 | imbitrrdi 162 |
. . . 4
|
| 36 | 35 | imp 124 |
. . 3
|
| 37 | 36 | an4s 588 |
. 2
|
| 38 | 1, 2, 37 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 |
| This theorem is referenced by: zdivmul 9463 msqznn 9473 zmulcld 9501 uz2mulcl 9729 qaddcl 9756 qmulcl 9758 qreccl 9763 fzctr 10255 flqmulnn0 10442 zexpcl 10699 iexpcyc 10789 zesq 10803 fprodzcl 11920 dvdsmul1 12124 dvdsmul2 12125 muldvds1 12127 muldvds2 12128 dvdscmul 12129 dvdsmulc 12130 dvds2ln 12135 dvdstr 12139 dvdsmultr1 12142 dvdsmultr2 12144 3dvdsdec 12176 3dvds2dec 12177 oexpneg 12188 mulsucdiv2z 12196 divalgb 12236 divalgmod 12238 ndvdsi 12244 absmulgcd 12338 gcdmultiple 12341 gcdmultiplez 12342 dvdsmulgcd 12346 rpmulgcd 12347 lcmcllem 12389 rpmul 12420 cncongr1 12425 cncongr2 12426 modprminv 12572 modprminveq 12573 modprm0 12577 pythagtriplem4 12591 pcpremul 12616 pcmul 12624 gzmulcl 12701 zsubrg 14343 dvdsrzring 14365 mulgrhm 14371 znidom 14419 znunit 14421 lgslem3 15479 lgsval 15481 lgsval2lem 15487 lgsval4a 15499 lgsneg 15501 lgsdir2 15510 lgsdir 15512 lgsdilem2 15513 lgsdi 15514 lgsne0 15515 lgseisenlem1 15547 lgseisenlem2 15548 lgseisenlem3 15549 lgsquadlem1 15554 lgsquad2lem2 15559 2lgsoddprmlem2 15583 |
| Copyright terms: Public domain | W3C validator |