| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmulcl | Unicode version | ||
| Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| zmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 9341 |
. 2
| |
| 2 | elznn0 9341 |
. 2
| |
| 3 | nn0mulcl 9285 |
. . . . . . . . 9
| |
| 4 | 3 | orcd 734 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | remulcl 8007 |
. . . . . . 7
| |
| 7 | 5, 6 | jctild 316 |
. . . . . 6
|
| 8 | nn0mulcl 9285 |
. . . . . . . . 9
| |
| 9 | recn 8012 |
. . . . . . . . . . 11
| |
| 10 | recn 8012 |
. . . . . . . . . . 11
| |
| 11 | mulneg1 8421 |
. . . . . . . . . . 11
| |
| 12 | 9, 10, 11 | syl2an 289 |
. . . . . . . . . 10
|
| 13 | 12 | eleq1d 2265 |
. . . . . . . . 9
|
| 14 | 8, 13 | imbitrid 154 |
. . . . . . . 8
|
| 15 | olc 712 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6 33 |
. . . . . . 7
|
| 17 | 16, 6 | jctild 316 |
. . . . . 6
|
| 18 | nn0mulcl 9285 |
. . . . . . . . 9
| |
| 19 | mulneg2 8422 |
. . . . . . . . . . 11
| |
| 20 | 9, 10, 19 | syl2an 289 |
. . . . . . . . . 10
|
| 21 | 20 | eleq1d 2265 |
. . . . . . . . 9
|
| 22 | 18, 21 | imbitrid 154 |
. . . . . . . 8
|
| 23 | 22, 15 | syl6 33 |
. . . . . . 7
|
| 24 | 23, 6 | jctild 316 |
. . . . . 6
|
| 25 | nn0mulcl 9285 |
. . . . . . . . 9
| |
| 26 | mul2neg 8424 |
. . . . . . . . . . 11
| |
| 27 | 9, 10, 26 | syl2an 289 |
. . . . . . . . . 10
|
| 28 | 27 | eleq1d 2265 |
. . . . . . . . 9
|
| 29 | 25, 28 | imbitrid 154 |
. . . . . . . 8
|
| 30 | orc 713 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl6 33 |
. . . . . . 7
|
| 32 | 31, 6 | jctild 316 |
. . . . . 6
|
| 33 | 7, 17, 24, 32 | ccased 967 |
. . . . 5
|
| 34 | elznn0 9341 |
. . . . 5
| |
| 35 | 33, 34 | imbitrrdi 162 |
. . . 4
|
| 36 | 35 | imp 124 |
. . 3
|
| 37 | 36 | an4s 588 |
. 2
|
| 38 | 1, 2, 37 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: zdivmul 9416 msqznn 9426 zmulcld 9454 uz2mulcl 9682 qaddcl 9709 qmulcl 9711 qreccl 9716 fzctr 10208 flqmulnn0 10389 zexpcl 10646 iexpcyc 10736 zesq 10750 fprodzcl 11774 dvdsmul1 11978 dvdsmul2 11979 muldvds1 11981 muldvds2 11982 dvdscmul 11983 dvdsmulc 11984 dvds2ln 11989 dvdstr 11993 dvdsmultr1 11996 dvdsmultr2 11998 3dvdsdec 12030 3dvds2dec 12031 oexpneg 12042 mulsucdiv2z 12050 divalgb 12090 divalgmod 12092 ndvdsi 12098 absmulgcd 12184 gcdmultiple 12187 gcdmultiplez 12188 dvdsmulgcd 12192 rpmulgcd 12193 lcmcllem 12235 rpmul 12266 cncongr1 12271 cncongr2 12272 modprminv 12418 modprminveq 12419 modprm0 12423 pythagtriplem4 12437 pcpremul 12462 pcmul 12470 gzmulcl 12547 zsubrg 14137 dvdsrzring 14159 mulgrhm 14165 znidom 14213 znunit 14215 lgslem3 15243 lgsval 15245 lgsval2lem 15251 lgsval4a 15263 lgsneg 15265 lgsdir2 15274 lgsdir 15276 lgsdilem2 15277 lgsdi 15278 lgsne0 15279 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgsquadlem1 15318 lgsquad2lem2 15323 2lgsoddprmlem2 15347 |
| Copyright terms: Public domain | W3C validator |