Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zmulcl | Unicode version |
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
Ref | Expression |
---|---|
zmulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 9202 | . 2 | |
2 | elznn0 9202 | . 2 | |
3 | nn0mulcl 9146 | . . . . . . . . 9 | |
4 | 3 | orcd 723 | . . . . . . . 8 |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | remulcl 7877 | . . . . . . 7 | |
7 | 5, 6 | jctild 314 | . . . . . 6 |
8 | nn0mulcl 9146 | . . . . . . . . 9 | |
9 | recn 7882 | . . . . . . . . . . 11 | |
10 | recn 7882 | . . . . . . . . . . 11 | |
11 | mulneg1 8289 | . . . . . . . . . . 11 | |
12 | 9, 10, 11 | syl2an 287 | . . . . . . . . . 10 |
13 | 12 | eleq1d 2234 | . . . . . . . . 9 |
14 | 8, 13 | syl5ib 153 | . . . . . . . 8 |
15 | olc 701 | . . . . . . . 8 | |
16 | 14, 15 | syl6 33 | . . . . . . 7 |
17 | 16, 6 | jctild 314 | . . . . . 6 |
18 | nn0mulcl 9146 | . . . . . . . . 9 | |
19 | mulneg2 8290 | . . . . . . . . . . 11 | |
20 | 9, 10, 19 | syl2an 287 | . . . . . . . . . 10 |
21 | 20 | eleq1d 2234 | . . . . . . . . 9 |
22 | 18, 21 | syl5ib 153 | . . . . . . . 8 |
23 | 22, 15 | syl6 33 | . . . . . . 7 |
24 | 23, 6 | jctild 314 | . . . . . 6 |
25 | nn0mulcl 9146 | . . . . . . . . 9 | |
26 | mul2neg 8292 | . . . . . . . . . . 11 | |
27 | 9, 10, 26 | syl2an 287 | . . . . . . . . . 10 |
28 | 27 | eleq1d 2234 | . . . . . . . . 9 |
29 | 25, 28 | syl5ib 153 | . . . . . . . 8 |
30 | orc 702 | . . . . . . . 8 | |
31 | 29, 30 | syl6 33 | . . . . . . 7 |
32 | 31, 6 | jctild 314 | . . . . . 6 |
33 | 7, 17, 24, 32 | ccased 955 | . . . . 5 |
34 | elznn0 9202 | . . . . 5 | |
35 | 33, 34 | syl6ibr 161 | . . . 4 |
36 | 35 | imp 123 | . . 3 |
37 | 36 | an4s 578 | . 2 |
38 | 1, 2, 37 | syl2anb 289 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 (class class class)co 5841 cc 7747 cr 7748 cmul 7754 cneg 8066 cn0 9110 cz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 |
This theorem is referenced by: zdivmul 9277 msqznn 9287 zmulcld 9315 uz2mulcl 9542 qaddcl 9569 qmulcl 9571 qreccl 9576 fzctr 10064 flqmulnn0 10230 zexpcl 10466 iexpcyc 10555 zesq 10569 fprodzcl 11546 dvdsmul1 11749 dvdsmul2 11750 muldvds1 11752 muldvds2 11753 dvdscmul 11754 dvdsmulc 11755 dvds2ln 11760 dvdstr 11764 dvdsmultr1 11767 dvdsmultr2 11769 3dvdsdec 11798 3dvds2dec 11799 oexpneg 11810 mulsucdiv2z 11818 divalgb 11858 divalgmod 11860 ndvdsi 11866 absmulgcd 11946 gcdmultiple 11949 gcdmultiplez 11950 dvdsmulgcd 11954 rpmulgcd 11955 lcmcllem 11995 rpmul 12026 cncongr1 12031 cncongr2 12032 modprminv 12177 modprminveq 12178 modprm0 12182 pythagtriplem4 12196 pcpremul 12221 pcmul 12229 gzmulcl 12304 lgslem3 13503 lgsval 13505 lgsval2lem 13511 lgsval4a 13523 lgsneg 13525 lgsdir2 13534 lgsdir 13536 lgsdilem2 13537 lgsdi 13538 lgsne0 13539 |
Copyright terms: Public domain | W3C validator |