| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zmulcl | Unicode version | ||
| Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| zmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 9358 |
. 2
| |
| 2 | elznn0 9358 |
. 2
| |
| 3 | nn0mulcl 9302 |
. . . . . . . . 9
| |
| 4 | 3 | orcd 734 |
. . . . . . . 8
|
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | remulcl 8024 |
. . . . . . 7
| |
| 7 | 5, 6 | jctild 316 |
. . . . . 6
|
| 8 | nn0mulcl 9302 |
. . . . . . . . 9
| |
| 9 | recn 8029 |
. . . . . . . . . . 11
| |
| 10 | recn 8029 |
. . . . . . . . . . 11
| |
| 11 | mulneg1 8438 |
. . . . . . . . . . 11
| |
| 12 | 9, 10, 11 | syl2an 289 |
. . . . . . . . . 10
|
| 13 | 12 | eleq1d 2265 |
. . . . . . . . 9
|
| 14 | 8, 13 | imbitrid 154 |
. . . . . . . 8
|
| 15 | olc 712 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl6 33 |
. . . . . . 7
|
| 17 | 16, 6 | jctild 316 |
. . . . . 6
|
| 18 | nn0mulcl 9302 |
. . . . . . . . 9
| |
| 19 | mulneg2 8439 |
. . . . . . . . . . 11
| |
| 20 | 9, 10, 19 | syl2an 289 |
. . . . . . . . . 10
|
| 21 | 20 | eleq1d 2265 |
. . . . . . . . 9
|
| 22 | 18, 21 | imbitrid 154 |
. . . . . . . 8
|
| 23 | 22, 15 | syl6 33 |
. . . . . . 7
|
| 24 | 23, 6 | jctild 316 |
. . . . . 6
|
| 25 | nn0mulcl 9302 |
. . . . . . . . 9
| |
| 26 | mul2neg 8441 |
. . . . . . . . . . 11
| |
| 27 | 9, 10, 26 | syl2an 289 |
. . . . . . . . . 10
|
| 28 | 27 | eleq1d 2265 |
. . . . . . . . 9
|
| 29 | 25, 28 | imbitrid 154 |
. . . . . . . 8
|
| 30 | orc 713 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl6 33 |
. . . . . . 7
|
| 32 | 31, 6 | jctild 316 |
. . . . . 6
|
| 33 | 7, 17, 24, 32 | ccased 967 |
. . . . 5
|
| 34 | elznn0 9358 |
. . . . 5
| |
| 35 | 33, 34 | imbitrrdi 162 |
. . . 4
|
| 36 | 35 | imp 124 |
. . 3
|
| 37 | 36 | an4s 588 |
. 2
|
| 38 | 1, 2, 37 | syl2anb 291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: zdivmul 9433 msqznn 9443 zmulcld 9471 uz2mulcl 9699 qaddcl 9726 qmulcl 9728 qreccl 9733 fzctr 10225 flqmulnn0 10406 zexpcl 10663 iexpcyc 10753 zesq 10767 fprodzcl 11791 dvdsmul1 11995 dvdsmul2 11996 muldvds1 11998 muldvds2 11999 dvdscmul 12000 dvdsmulc 12001 dvds2ln 12006 dvdstr 12010 dvdsmultr1 12013 dvdsmultr2 12015 3dvdsdec 12047 3dvds2dec 12048 oexpneg 12059 mulsucdiv2z 12067 divalgb 12107 divalgmod 12109 ndvdsi 12115 absmulgcd 12209 gcdmultiple 12212 gcdmultiplez 12213 dvdsmulgcd 12217 rpmulgcd 12218 lcmcllem 12260 rpmul 12291 cncongr1 12296 cncongr2 12297 modprminv 12443 modprminveq 12444 modprm0 12448 pythagtriplem4 12462 pcpremul 12487 pcmul 12495 gzmulcl 12572 zsubrg 14213 dvdsrzring 14235 mulgrhm 14241 znidom 14289 znunit 14291 lgslem3 15327 lgsval 15329 lgsval2lem 15335 lgsval4a 15347 lgsneg 15349 lgsdir2 15358 lgsdir 15360 lgsdilem2 15361 lgsdi 15362 lgsne0 15363 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgsquadlem1 15402 lgsquad2lem2 15407 2lgsoddprmlem2 15431 |
| Copyright terms: Public domain | W3C validator |