Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zmulcl | Unicode version |
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.) |
Ref | Expression |
---|---|
zmulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 9227 | . 2 | |
2 | elznn0 9227 | . 2 | |
3 | nn0mulcl 9171 | . . . . . . . . 9 | |
4 | 3 | orcd 728 | . . . . . . . 8 |
5 | 4 | a1i 9 | . . . . . . 7 |
6 | remulcl 7902 | . . . . . . 7 | |
7 | 5, 6 | jctild 314 | . . . . . 6 |
8 | nn0mulcl 9171 | . . . . . . . . 9 | |
9 | recn 7907 | . . . . . . . . . . 11 | |
10 | recn 7907 | . . . . . . . . . . 11 | |
11 | mulneg1 8314 | . . . . . . . . . . 11 | |
12 | 9, 10, 11 | syl2an 287 | . . . . . . . . . 10 |
13 | 12 | eleq1d 2239 | . . . . . . . . 9 |
14 | 8, 13 | syl5ib 153 | . . . . . . . 8 |
15 | olc 706 | . . . . . . . 8 | |
16 | 14, 15 | syl6 33 | . . . . . . 7 |
17 | 16, 6 | jctild 314 | . . . . . 6 |
18 | nn0mulcl 9171 | . . . . . . . . 9 | |
19 | mulneg2 8315 | . . . . . . . . . . 11 | |
20 | 9, 10, 19 | syl2an 287 | . . . . . . . . . 10 |
21 | 20 | eleq1d 2239 | . . . . . . . . 9 |
22 | 18, 21 | syl5ib 153 | . . . . . . . 8 |
23 | 22, 15 | syl6 33 | . . . . . . 7 |
24 | 23, 6 | jctild 314 | . . . . . 6 |
25 | nn0mulcl 9171 | . . . . . . . . 9 | |
26 | mul2neg 8317 | . . . . . . . . . . 11 | |
27 | 9, 10, 26 | syl2an 287 | . . . . . . . . . 10 |
28 | 27 | eleq1d 2239 | . . . . . . . . 9 |
29 | 25, 28 | syl5ib 153 | . . . . . . . 8 |
30 | orc 707 | . . . . . . . 8 | |
31 | 29, 30 | syl6 33 | . . . . . . 7 |
32 | 31, 6 | jctild 314 | . . . . . 6 |
33 | 7, 17, 24, 32 | ccased 960 | . . . . 5 |
34 | elznn0 9227 | . . . . 5 | |
35 | 33, 34 | syl6ibr 161 | . . . 4 |
36 | 35 | imp 123 | . . 3 |
37 | 36 | an4s 583 | . 2 |
38 | 1, 2, 37 | syl2anb 289 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 cr 7773 cmul 7779 cneg 8091 cn0 9135 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: zdivmul 9302 msqznn 9312 zmulcld 9340 uz2mulcl 9567 qaddcl 9594 qmulcl 9596 qreccl 9601 fzctr 10089 flqmulnn0 10255 zexpcl 10491 iexpcyc 10580 zesq 10594 fprodzcl 11572 dvdsmul1 11775 dvdsmul2 11776 muldvds1 11778 muldvds2 11779 dvdscmul 11780 dvdsmulc 11781 dvds2ln 11786 dvdstr 11790 dvdsmultr1 11793 dvdsmultr2 11795 3dvdsdec 11824 3dvds2dec 11825 oexpneg 11836 mulsucdiv2z 11844 divalgb 11884 divalgmod 11886 ndvdsi 11892 absmulgcd 11972 gcdmultiple 11975 gcdmultiplez 11976 dvdsmulgcd 11980 rpmulgcd 11981 lcmcllem 12021 rpmul 12052 cncongr1 12057 cncongr2 12058 modprminv 12203 modprminveq 12204 modprm0 12208 pythagtriplem4 12222 pcpremul 12247 pcmul 12255 gzmulcl 12330 lgslem3 13697 lgsval 13699 lgsval2lem 13705 lgsval4a 13717 lgsneg 13719 lgsdir2 13728 lgsdir 13730 lgsdilem2 13731 lgsdi 13732 lgsne0 13733 |
Copyright terms: Public domain | W3C validator |