ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zmulcl Unicode version

Theorem zmulcl 9370
Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
zmulcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )

Proof of Theorem zmulcl
StepHypRef Expression
1 elznn0 9332 . 2  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) ) )
2 elznn0 9332 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
3 nn0mulcl 9276 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
43orcd 734 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
)
54a1i 9 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) )
6 remulcl 8000 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  x.  N
)  e.  RR )
75, 6jctild 316 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) ) )
8 nn0mulcl 9276 . . . . . . . . 9  |-  ( (
-u M  e.  NN0  /\  N  e.  NN0 )  ->  ( -u M  x.  N )  e.  NN0 )
9 recn 8005 . . . . . . . . . . 11  |-  ( M  e.  RR  ->  M  e.  CC )
10 recn 8005 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  N  e.  CC )
11 mulneg1 8414 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
129, 10, 11syl2an 289 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
1312eleq1d 2262 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  x.  N )  e.  NN0  <->  -u ( M  x.  N )  e.  NN0 ) )
148, 13imbitrid 154 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  -u ( M  x.  N )  e.  NN0 ) )
15 olc 712 . . . . . . . 8  |-  ( -u ( M  x.  N
)  e.  NN0  ->  ( ( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
)
1614, 15syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
1716, 6jctild 316 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
18 nn0mulcl 9276 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( M  x.  -u N
)  e.  NN0 )
19 mulneg2 8415 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  x.  -u N
)  =  -u ( M  x.  N )
)
209, 10, 19syl2an 289 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  x.  -u N
)  =  -u ( M  x.  N )
)
2120eleq1d 2262 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  x.  -u N )  e.  NN0  <->  -u ( M  x.  N )  e.  NN0 ) )
2218, 21imbitrid 154 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  -u ( M  x.  N )  e.  NN0 ) )
2322, 15syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
2423, 6jctild 316 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  e. 
NN0  /\  -u N  e. 
NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
25 nn0mulcl 9276 . . . . . . . . 9  |-  ( (
-u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( -u M  x.  -u N )  e. 
NN0 )
26 mul2neg 8417 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( -u M  x.  -u N )  =  ( M  x.  N ) )
279, 10, 26syl2an 289 . . . . . . . . . 10  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( -u M  x.  -u N )  =  ( M  x.  N ) )
2827eleq1d 2262 . . . . . . . . 9  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  x.  -u N )  e. 
NN0 
<->  ( M  x.  N
)  e.  NN0 )
)
2925, 28imbitrid 154 . . . . . . . 8  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( M  x.  N )  e.  NN0 ) )
30 orc 713 . . . . . . . 8  |-  ( ( M  x.  N )  e.  NN0  ->  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) )
3129, 30syl6 33 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) )
3231, 6jctild 316 . . . . . 6  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
337, 17, 24, 32ccased 967 . . . . 5  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N
)  e.  NN0 )
) ) )
34 elznn0 9332 . . . . 5  |-  ( ( M  x.  N )  e.  ZZ  <->  ( ( M  x.  N )  e.  RR  /\  ( ( M  x.  N )  e.  NN0  \/  -u ( M  x.  N )  e.  NN0 ) ) )
3533, 34imbitrrdi 162 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  -> 
( M  x.  N
)  e.  ZZ ) )
3635imp 124 . . 3  |-  ( ( ( M  e.  RR  /\  N  e.  RR )  /\  ( ( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )  ->  ( M  x.  N )  e.  ZZ )
3736an4s 588 . 2  |-  ( ( ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) )  /\  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )  ->  ( M  x.  N )  e.  ZZ )
381, 2, 37syl2anb 291 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  x.  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870   RRcr 7871    x. cmul 7877   -ucneg 8191   NN0cn0 9240   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by:  zdivmul  9407  msqznn  9417  zmulcld  9445  uz2mulcl  9673  qaddcl  9700  qmulcl  9702  qreccl  9707  fzctr  10199  flqmulnn0  10368  zexpcl  10625  iexpcyc  10715  zesq  10729  fprodzcl  11752  dvdsmul1  11956  dvdsmul2  11957  muldvds1  11959  muldvds2  11960  dvdscmul  11961  dvdsmulc  11962  dvds2ln  11967  dvdstr  11971  dvdsmultr1  11974  dvdsmultr2  11976  3dvdsdec  12006  3dvds2dec  12007  oexpneg  12018  mulsucdiv2z  12026  divalgb  12066  divalgmod  12068  ndvdsi  12074  absmulgcd  12154  gcdmultiple  12157  gcdmultiplez  12158  dvdsmulgcd  12162  rpmulgcd  12163  lcmcllem  12205  rpmul  12236  cncongr1  12241  cncongr2  12242  modprminv  12387  modprminveq  12388  modprm0  12392  pythagtriplem4  12406  pcpremul  12431  pcmul  12439  gzmulcl  12516  zsubrg  14069  dvdsrzring  14091  mulgrhm  14097  znidom  14145  znunit  14147  lgslem3  15118  lgsval  15120  lgsval2lem  15126  lgsval4a  15138  lgsneg  15140  lgsdir2  15149  lgsdir  15151  lgsdilem2  15152  lgsdi  15153  lgsne0  15154  lgseisenlem1  15186  lgseisenlem2  15187  lgseisenlem3  15188  lgsquadlem1  15191  2lgsoddprmlem2  15194
  Copyright terms: Public domain W3C validator