ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptiprleml Unicode version

Theorem aptiprleml 7447
Description: Lemma for aptipr 7449. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptiprleml  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )

Proof of Theorem aptiprleml
Dummy variables  f  g  h  s  t  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7283 . . . . . . 7  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prnmaxl 7296 . . . . . . 7  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. s  e.  ( 1st `  A ) x 
<Q  s )
31, 2sylan 281 . . . . . 6  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  E. s  e.  ( 1st `  A ) x 
<Q  s )
43ad2ant2rl 502 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  E. s  e.  ( 1st `  A
) x  <Q  s
)
5 ltexnqi 7217 . . . . . . 7  |-  ( x 
<Q  s  ->  E. t  e.  Q.  ( x  +Q  t )  =  s )
65ad2antll 482 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  ->  E. t  e.  Q.  ( x  +Q  t )  =  s )
7 simplr 519 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  B  e.  P. )
87ad2antrr 479 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  /\  (
t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  ->  B  e.  P. )
9 simprl 520 . . . . . . . 8  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  /\  (
t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  ->  t  e.  Q. )
10 prop 7283 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
11 prarloc2 7312 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  t  e.  Q. )  ->  E. u  e.  ( 1st `  B ) ( u  +Q  t
)  e.  ( 2nd `  B ) )
1210, 11sylan 281 . . . . . . . 8  |-  ( ( B  e.  P.  /\  t  e.  Q. )  ->  E. u  e.  ( 1st `  B ) ( u  +Q  t
)  e.  ( 2nd `  B ) )
138, 9, 12syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  /\  (
t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  ->  E. u  e.  ( 1st `  B
) ( u  +Q  t )  e.  ( 2nd `  B ) )
148adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  B  e.  P. )
15 simprl 520 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  u  e.  ( 1st `  B
) )
16 elprnql 7289 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  u  e.  ( 1st `  B ) )  ->  u  e.  Q. )
1710, 16sylan 281 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  u  e.  ( 1st `  B ) )  ->  u  e.  Q. )
1814, 15, 17syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  u  e.  Q. )
19 simpll 518 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  A  e.  P. )
2019ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  A  e.  P. )
21 simprr 521 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  x  e.  ( 1st `  A
) )
2221ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  x  e.  ( 1st `  A
) )
23 elprnql 7289 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
241, 23sylan 281 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
2520, 22, 24syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  x  e.  Q. )
26 nqtri3or 7204 . . . . . . . . 9  |-  ( ( u  e.  Q.  /\  x  e.  Q. )  ->  ( u  <Q  x  \/  u  =  x  \/  x  <Q  u ) )
2718, 25, 26syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  \/  u  =  x  \/  x  <Q  u ) )
2818adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  u  e.  Q. )
29 simplrl 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  t  e.  Q. )
3029adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  t  e.  Q. )
31 addclnq 7183 . . . . . . . . . . . . . 14  |-  ( ( u  e.  Q.  /\  t  e.  Q. )  ->  ( u  +Q  t
)  e.  Q. )
3228, 30, 31syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  (
u  +Q  t )  e.  Q. )
33 ltanqg 7208 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3433adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
35 addcomnqg 7189 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3635adantl 275 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3734, 18, 25, 29, 36caovord2d 5940 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  <->  ( u  +Q  t )  <Q  (
x  +Q  t ) ) )
38 simplrr 525 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
x  +Q  t )  =  s )
39 simprl 520 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  ->  s  e.  ( 1st `  A
) )
4039ad2antrr 479 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  s  e.  ( 1st `  A
) )
4138, 40eqeltrd 2216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
x  +Q  t )  e.  ( 1st `  A
) )
42 prcdnql 7292 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( x  +Q  t
)  e.  ( 1st `  A ) )  -> 
( ( u  +Q  t )  <Q  (
x  +Q  t )  ->  ( u  +Q  t )  e.  ( 1st `  A ) ) )
431, 42sylan 281 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  ( x  +Q  t
)  e.  ( 1st `  A ) )  -> 
( ( u  +Q  t )  <Q  (
x  +Q  t )  ->  ( u  +Q  t )  e.  ( 1st `  A ) ) )
4420, 41, 43syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
( u  +Q  t
)  <Q  ( x  +Q  t )  ->  (
u  +Q  t )  e.  ( 1st `  A
) ) )
4537, 44sylbid 149 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  ->  (
u  +Q  t )  e.  ( 1st `  A
) ) )
46 simprr 521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  +Q  t )  e.  ( 2nd `  B
) )
4745, 46jctild 314 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  ->  (
( u  +Q  t
)  e.  ( 2nd `  B )  /\  (
u  +Q  t )  e.  ( 1st `  A
) ) ) )
4847imp 123 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  (
( u  +Q  t
)  e.  ( 2nd `  B )  /\  (
u  +Q  t )  e.  ( 1st `  A
) ) )
49 eleq1 2202 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  +Q  t )  ->  (
v  e.  ( 2nd `  B )  <->  ( u  +Q  t )  e.  ( 2nd `  B ) ) )
50 eleq1 2202 . . . . . . . . . . . . . . 15  |-  ( v  =  ( u  +Q  t )  ->  (
v  e.  ( 1st `  A )  <->  ( u  +Q  t )  e.  ( 1st `  A ) ) )
5149, 50anbi12d 464 . . . . . . . . . . . . . 14  |-  ( v  =  ( u  +Q  t )  ->  (
( v  e.  ( 2nd `  B )  /\  v  e.  ( 1st `  A ) )  <->  ( ( u  +Q  t )  e.  ( 2nd `  B
)  /\  ( u  +Q  t )  e.  ( 1st `  A ) ) ) )
5251rspcev 2789 . . . . . . . . . . . . 13  |-  ( ( ( u  +Q  t
)  e.  Q.  /\  ( ( u  +Q  t )  e.  ( 2nd `  B )  /\  ( u  +Q  t )  e.  ( 1st `  A ) ) )  ->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) )
5332, 48, 52syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) )
54 ltdfpr 7314 . . . . . . . . . . . . . 14  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  <P  A  <->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) ) )
5514, 20, 54syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  ( B  <P  A  <->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) ) )
5655adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  ( B  <P  A  <->  E. v  e.  Q.  ( v  e.  ( 2nd `  B
)  /\  v  e.  ( 1st `  A ) ) ) )
5753, 56mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  B  <P  A )
58 simplrl 524 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  ->  -.  B  <P  A )
5958ad3antrrr 483 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  -.  B  <P  A )
6057, 59pm2.21dd 609 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  /\  u  <Q  x )  ->  x  e.  ( 1st `  B
) )
6160ex 114 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  <Q  x  ->  x  e.  ( 1st `  B
) ) )
62 eleq1 2202 . . . . . . . . . 10  |-  ( u  =  x  ->  (
u  e.  ( 1st `  B )  <->  x  e.  ( 1st `  B ) ) )
6315, 62syl5ibcom 154 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
u  =  x  ->  x  e.  ( 1st `  B ) ) )
64 prcdnql 7292 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  u  e.  ( 1st `  B ) )  -> 
( x  <Q  u  ->  x  e.  ( 1st `  B ) ) )
6510, 64sylan 281 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  u  e.  ( 1st `  B ) )  -> 
( x  <Q  u  ->  x  e.  ( 1st `  B ) ) )
6614, 15, 65syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
x  <Q  u  ->  x  e.  ( 1st `  B
) ) )
6761, 63, 663jaod 1282 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  (
( u  <Q  x  \/  u  =  x  \/  x  <Q  u )  ->  x  e.  ( 1st `  B ) ) )
6827, 67mpd 13 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  (
s  e.  ( 1st `  A )  /\  x  <Q  s ) )  /\  ( t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  /\  ( u  e.  ( 1st `  B
)  /\  ( u  +Q  t )  e.  ( 2nd `  B ) ) )  ->  x  e.  ( 1st `  B
) )
6913, 68rexlimddv 2554 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  /\  (
t  e.  Q.  /\  ( x  +Q  t
)  =  s ) )  ->  x  e.  ( 1st `  B ) )
706, 69rexlimddv 2554 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  /\  ( s  e.  ( 1st `  A
)  /\  x  <Q  s ) )  ->  x  e.  ( 1st `  B
) )
714, 70rexlimddv 2554 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( -.  B  <P  A  /\  x  e.  ( 1st `  A ) ) )  ->  x  e.  ( 1st `  B
) )
7271expr 372 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  -.  B  <P  A )  ->  ( x  e.  ( 1st `  A
)  ->  x  e.  ( 1st `  B ) ) )
73723impa 1176 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( x  e.  ( 1st `  A )  ->  x  e.  ( 1st `  B ) ) )
7473ssrdv 3103 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  -.  B  <P  A )  -> 
( 1st `  A
)  C_  ( 1st `  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 961    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417    C_ wss 3071   <.cop 3530   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   Q.cnq 7088    +Q cplq 7090    <Q cltq 7093   P.cnp 7099    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iltp 7278
This theorem is referenced by:  aptipr  7449
  Copyright terms: Public domain W3C validator