ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmtopcnp Unicode version

Theorem lmtopcnp 12408
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
Hypotheses
Ref Expression
lmcnp.3  |-  ( ph  ->  F ( ~~> t `  J ) P )
lmcnp.k  |-  ( ph  ->  K  e.  Top )
lmcnp.4  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
Assertion
Ref Expression
lmtopcnp  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )

Proof of Theorem lmtopcnp
Dummy variables  j  k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcnp.3 . . . . . . . 8  |-  ( ph  ->  F ( ~~> t `  J ) P )
2 lmrcl 12349 . . . . . . . 8  |-  ( F ( ~~> t `  J
) P  ->  J  e.  Top )
31, 2syl 14 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
4 toptopon2 12175 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
53, 4sylib 121 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
6 lmcnp.k . . . . . . 7  |-  ( ph  ->  K  e.  Top )
7 toptopon2 12175 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
86, 7sylib 121 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
9 lmcnp.4 . . . . . 6  |-  ( ph  ->  G  e.  ( ( J  CnP  K ) `
 P ) )
10 cnpf2 12365 . . . . . 6  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  U. K )  /\  G  e.  ( ( J  CnP  K
) `  P )
)  ->  G : U. J --> U. K )
115, 8, 9, 10syl3anc 1216 . . . . 5  |-  ( ph  ->  G : U. J --> U. K )
12 nnuz 9354 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
13 1zzd 9074 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
145, 12, 13lmbr2 12372 . . . . . . . . 9  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e. 
U. J  /\  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) ) ) )
151, 14mpbid 146 . . . . . . . 8  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC )  /\  P  e.  U. J  /\  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) ) )
1615simp1d 993 . . . . . . 7  |-  ( ph  ->  F  e.  ( U. J  ^pm  CC ) )
17 uniexg 4356 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. J  e.  _V )
183, 17syl 14 . . . . . . . 8  |-  ( ph  ->  U. J  e.  _V )
19 cnex 7737 . . . . . . . 8  |-  CC  e.  _V
20 elpm2g 6552 . . . . . . . 8  |-  ( ( U. J  e.  _V  /\  CC  e.  _V )  ->  ( F  e.  ( U. J  ^pm  CC ) 
<->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) ) )
2118, 19, 20sylancl 409 . . . . . . 7  |-  ( ph  ->  ( F  e.  ( U. J  ^pm  CC ) 
<->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) ) )
2216, 21mpbid 146 . . . . . 6  |-  ( ph  ->  ( F : dom  F --> U. J  /\  dom  F 
C_  CC ) )
2322simpld 111 . . . . 5  |-  ( ph  ->  F : dom  F --> U. J )
24 fco 5283 . . . . 5  |-  ( ( G : U. J --> U. K  /\  F : dom  F --> U. J )  -> 
( G  o.  F
) : dom  F --> U. K )
2511, 23, 24syl2anc 408 . . . 4  |-  ( ph  ->  ( G  o.  F
) : dom  F --> U. K )
2625fdmd 5274 . . . . 5  |-  ( ph  ->  dom  ( G  o.  F )  =  dom  F )
2726feq2d 5255 . . . 4  |-  ( ph  ->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  <->  ( G  o.  F ) : dom  F --> U. K ) )
2825, 27mpbird 166 . . 3  |-  ( ph  ->  ( G  o.  F
) : dom  ( G  o.  F ) --> U. K )
2922simprd 113 . . . 4  |-  ( ph  ->  dom  F  C_  CC )
3026, 29eqsstrd 3128 . . 3  |-  ( ph  ->  dom  ( G  o.  F )  C_  CC )
31 uniexg 4356 . . . . 5  |-  ( K  e.  Top  ->  U. K  e.  _V )
326, 31syl 14 . . . 4  |-  ( ph  ->  U. K  e.  _V )
33 elpm2g 6552 . . . 4  |-  ( ( U. K  e.  _V  /\  CC  e.  _V )  ->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC ) 
<->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  /\  dom  ( G  o.  F
)  C_  CC )
) )
3432, 19, 33sylancl 409 . . 3  |-  ( ph  ->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC ) 
<->  ( ( G  o.  F ) : dom  ( G  o.  F
) --> U. K  /\  dom  ( G  o.  F
)  C_  CC )
) )
3528, 30, 34mpbir2and 928 . 2  |-  ( ph  ->  ( G  o.  F
)  e.  ( U. K  ^pm  CC ) )
3615simp2d 994 . . 3  |-  ( ph  ->  P  e.  U. J
)
3711, 36ffvelrnd 5549 . 2  |-  ( ph  ->  ( G `  P
)  e.  U. K
)
3815simp3d 995 . . . . . 6  |-  ( ph  ->  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) )
3938adantr 274 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) ) )
405adantr 274 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  J  e.  (TopOn `  U. J ) )
418adantr 274 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  K  e.  (TopOn `  U. K ) )
4236adantr 274 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  P  e.  U. J )
439adantr 274 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  G  e.  ( ( J  CnP  K ) `  P ) )
44 simprl 520 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  u  e.  K )
45 simprr 521 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  -> 
( G `  P
)  e.  u )
46 icnpimaex 12369 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  U. K )  /\  P  e.  U. J )  /\  ( G  e.  (
( J  CnP  K
) `  P )  /\  u  e.  K  /\  ( G `  P
)  e.  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( G " v )  C_  u ) )
4740, 41, 42, 43, 44, 45, 46syl33anc 1231 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( G " v
)  C_  u )
)
48 r19.29 2567 . . . . . . 7  |-  ( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G " v ) 
C_  u ) ) )
49 pm3.45 586 . . . . . . . . 9  |-  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  ->  ( ( P  e.  v  /\  ( G " v )  C_  u )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) ) )
5049imp 123 . . . . . . . 8  |-  ( ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G
" v )  C_  u ) )  -> 
( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G
" v )  C_  u ) )
5150reximi 2527 . . . . . . 7  |-  ( E. v  e.  J  ( ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) )
5248, 51syl 14 . . . . . 6  |-  ( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G
" v )  C_  u ) )  ->  E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u ) )
5311ad3antrrr 483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  G : U. J
--> U. K )
5453ffnd 5268 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  G  Fn  U. J )
55 simplrl 524 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  v  e.  J
)
56 elssuni 3759 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  J  ->  v  C_ 
U. J )
5755, 56syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  v  C_  U. J
)
58 fnfvima 5645 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  Fn  U. J  /\  v  C_  U. J  /\  ( F `  k
)  e.  v )  ->  ( G `  ( F `  k ) )  e.  ( G
" v ) )
59583expia 1183 . . . . . . . . . . . . . . . . 17  |-  ( ( G  Fn  U. J  /\  v  C_  U. J
)  ->  ( ( F `  k )  e.  v  ->  ( G `
 ( F `  k ) )  e.  ( G " v
) ) )
6054, 57, 59syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( G `  ( F `  k
) )  e.  ( G " v ) ) )
6123ad2antrr 479 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  ->  F : dom  F --> U. J
)
62 fvco3 5485 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : dom  F --> U. J  /\  k  e.  dom  F )  -> 
( ( G  o.  F ) `  k
)  =  ( G `
 ( F `  k ) ) )
6361, 62sylan 281 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( G  o.  F ) `  k )  =  ( G `  ( F `
 k ) ) )
6463eleq1d 2206 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( ( G  o.  F ) `
 k )  e.  ( G " v
)  <->  ( G `  ( F `  k ) )  e.  ( G
" v ) ) )
6560, 64sylibrd 168 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( ( G  o.  F ) `  k )  e.  ( G " v ) ) )
66 simplrr 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( G "
v )  C_  u
)
6766sseld 3091 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( ( G  o.  F ) `
 k )  e.  ( G " v
)  ->  ( ( G  o.  F ) `  k )  e.  u
) )
6865, 67syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( ( G  o.  F ) `  k )  e.  u
) )
69 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  k  e.  dom  F )
7026ad3antrrr 483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  dom  ( G  o.  F )  =  dom  F )
7169, 70eleqtrrd 2217 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  k  e.  dom  ( G  o.  F
) )
7268, 71jctild 314 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( u  e.  K  /\  ( G `  P
)  e.  u ) )  /\  ( v  e.  J  /\  ( G " v )  C_  u ) )  /\  k  e.  dom  F )  ->  ( ( F `
 k )  e.  v  ->  ( k  e.  dom  ( G  o.  F )  /\  (
( G  o.  F
) `  k )  e.  u ) ) )
7372expimpd 360 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  v )  ->  (
k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
7473ralimdv 2498 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
7574reximdv 2531 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  ( v  e.  J  /\  ( G
" v )  C_  u ) )  -> 
( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
7675expr 372 . . . . . . . . 9  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( G " v )  C_  u  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) ) )
7776com23 78 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  ->  ( ( G " v )  C_  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) ) )
7877impd 252 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  K  /\  ( G `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G " v ) 
C_  u )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
7978rexlimdva 2547 . . . . . 6  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  -> 
( E. v  e.  J  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v )  /\  ( G
" v )  C_  u )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( G  o.  F
)  /\  ( ( G  o.  F ) `  k )  e.  u
) ) )
8052, 79syl5 32 . . . . 5  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  -> 
( ( A. v  e.  J  ( P  e.  v  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  v ) )  /\  E. v  e.  J  ( P  e.  v  /\  ( G " v ) 
C_  u ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
8139, 47, 80mp2and 429 . . . 4  |-  ( (
ph  /\  ( u  e.  K  /\  ( G `  P )  e.  u ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) )
8281expr 372 . . 3  |-  ( (
ph  /\  u  e.  K )  ->  (
( G `  P
)  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
8382ralrimiva 2503 . 2  |-  ( ph  ->  A. u  e.  K  ( ( G `  P )  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) )
848, 12, 13lmbr2 12372 . 2  |-  ( ph  ->  ( ( G  o.  F ) ( ~~> t `  K ) ( G `
 P )  <->  ( ( G  o.  F )  e.  ( U. K  ^pm  CC )  /\  ( G `
 P )  e. 
U. K  /\  A. u  e.  K  (
( G `  P
)  e.  u  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( G  o.  F )  /\  ( ( G  o.  F ) `  k
)  e.  u ) ) ) ) )
8535, 37, 83, 84mpbir3and 1164 1  |-  ( ph  ->  ( G  o.  F
) ( ~~> t `  K ) ( G `
 P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   _Vcvv 2681    C_ wss 3066   U.cuni 3731   class class class wbr 3924   dom cdm 4534   "cima 4537    o. ccom 4538    Fn wfn 5113   -->wf 5114   ` cfv 5118  (class class class)co 5767    ^pm cpm 6536   CCcc 7611   1c1 7614   NNcn 8713   ZZ>=cuz 9319   Topctop 12153  TopOnctopon 12166    CnP ccnp 12344   ~~> tclm 12345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-pm 6538  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-top 12154  df-topon 12167  df-cnp 12347  df-lm 12348
This theorem is referenced by:  lmcn  12409
  Copyright terms: Public domain W3C validator