ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdzeq Unicode version

Theorem gcdzeq 11454
Description: A positive integer  A is equal to its gcd with an integer  B if and only if  A divides  B. Generalization of gcdeq 11455. (Contributed by AV, 1-Jul-2020.)
Assertion
Ref Expression
gcdzeq  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  A  <->  A  ||  B
) )

Proof of Theorem gcdzeq
StepHypRef Expression
1 nnz 8867 . . . . 5  |-  ( A  e.  NN  ->  A  e.  ZZ )
2 gcddvds 11398 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
31, 2sylan 278 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
43simprd 113 . . 3  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  B )
5 breq1 3870 . . 3  |-  ( ( A  gcd  B )  =  A  ->  (
( A  gcd  B
)  ||  B  <->  A  ||  B
) )
64, 5syl5ibcom 154 . 2  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  A  ->  A  ||  B ) )
71adantr 271 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  A  e.  ZZ )
8 iddvds 11252 . . . . . 6  |-  ( A  e.  ZZ  ->  A  ||  A )
97, 8syl 14 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  A  ||  A )
10 simpr 109 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  B  e.  ZZ )
11 nnne0 8548 . . . . . . . 8  |-  ( A  e.  NN  ->  A  =/=  0 )
12 simpl 108 . . . . . . . . 9  |-  ( ( A  =  0  /\  B  =  0 )  ->  A  =  0 )
1312necon3ai 2311 . . . . . . . 8  |-  ( A  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
1411, 13syl 14 . . . . . . 7  |-  ( A  e.  NN  ->  -.  ( A  =  0  /\  B  =  0
) )
1514adantr 271 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  -.  ( A  =  0  /\  B  =  0 ) )
16 dvdslegcd 11399 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A  ||  A  /\  A  ||  B
)  ->  A  <_  ( A  gcd  B ) ) )
177, 7, 10, 15, 16syl31anc 1184 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( ( A  ||  A  /\  A  ||  B
)  ->  A  <_  ( A  gcd  B ) ) )
189, 17mpand 421 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  ||  B  ->  A  <_  ( A  gcd  B ) ) )
193simpld 111 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  A )
20 gcdcl 11401 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
211, 20sylan 278 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
2221nn0zd 8965 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
23 simpl 108 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  A  e.  NN )
24 dvdsle 11288 . . . . . 6  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  NN )  ->  ( ( A  gcd  B )  ||  A  -> 
( A  gcd  B
)  <_  A )
)
2522, 23, 24syl2anc 404 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  -> 
( A  gcd  B
)  <_  A )
)
2619, 25mpd 13 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  <_  A )
2718, 26jctild 310 . . 3  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  ||  B  ->  ( ( A  gcd  B )  <_  A  /\  A  <_  ( A  gcd  B ) ) ) )
2821nn0red 8825 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  RR )
29 nnre 8527 . . . . 5  |-  ( A  e.  NN  ->  A  e.  RR )
3029adantr 271 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  A  e.  RR )
3128, 30letri3d 7697 . . 3  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  A  <->  ( ( A  gcd  B )  <_  A  /\  A  <_  ( A  gcd  B ) ) ) )
3227, 31sylibrd 168 . 2  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( A  ||  B  ->  ( A  gcd  B
)  =  A ) )
336, 32impbid 128 1  |-  ( ( A  e.  NN  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  =  A  <->  A  ||  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445    =/= wne 2262   class class class wbr 3867  (class class class)co 5690   RRcr 7446   0cc0 7447    <_ cle 7620   NNcn 8520   NN0cn0 8771   ZZcz 8848    || cdvds 11239    gcd cgcd 11381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561  ax-caucvg 7562
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-sup 6759  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-2 8579  df-3 8580  df-4 8581  df-n0 8772  df-z 8849  df-uz 9119  df-q 9204  df-rp 9234  df-fz 9574  df-fzo 9703  df-fl 9826  df-mod 9879  df-iseq 10002  df-seq3 10003  df-exp 10086  df-cj 10407  df-re 10408  df-im 10409  df-rsqrt 10562  df-abs 10563  df-dvds 11240  df-gcd 11382
This theorem is referenced by:  gcdeq  11455  isevengcd2  11580
  Copyright terms: Public domain W3C validator