ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6an Unicode version

Theorem syl6an 1476
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
Hypotheses
Ref Expression
syl6an.1  |-  ( ph  ->  ps )
syl6an.2  |-  ( ph  ->  ( ch  ->  th )
)
syl6an.3  |-  ( ( ps  /\  th )  ->  ta )
Assertion
Ref Expression
syl6an  |-  ( ph  ->  ( ch  ->  ta ) )

Proof of Theorem syl6an
StepHypRef Expression
1 syl6an.2 . . 3  |-  ( ph  ->  ( ch  ->  th )
)
2 syl6an.1 . . 3  |-  ( ph  ->  ps )
31, 2jctild 316 . 2  |-  ( ph  ->  ( ch  ->  ( ps  /\  th ) ) )
4 syl6an.3 . 2  |-  ( ( ps  /\  th )  ->  ta )
53, 4syl6 33 1  |-  ( ph  ->  ( ch  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mapxpen  7005  prarloclem5  7683  ltsopr  7779  suplocsrlem  7991  nominpos  9345  ublbneg  9804  wrdsymb0  11099  ccats1pfxeqrex  11242  absle  11595  rexanre  11726  rexico  11727  climshftlemg  11808  serf0  11858  dvds1lem  12308  dvds2lem  12309  lmconst  14884  addcncntoplem  15229  bj-indind  16253
  Copyright terms: Public domain W3C validator