| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl6an | Unicode version | ||
| Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| syl6an.1 |
|
| syl6an.2 |
|
| syl6an.3 |
|
| Ref | Expression |
|---|---|
| syl6an |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.2 |
. . 3
| |
| 2 | syl6an.1 |
. . 3
| |
| 3 | 1, 2 | jctild 316 |
. 2
|
| 4 | syl6an.3 |
. 2
| |
| 5 | 3, 4 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mapxpen 7005 prarloclem5 7683 ltsopr 7779 suplocsrlem 7991 nominpos 9345 ublbneg 9804 wrdsymb0 11099 ccats1pfxeqrex 11242 absle 11595 rexanre 11726 rexico 11727 climshftlemg 11808 serf0 11858 dvds1lem 12308 dvds2lem 12309 lmconst 14884 addcncntoplem 15229 bj-indind 16253 |
| Copyright terms: Public domain | W3C validator |