ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6an Unicode version

Theorem syl6an 1368
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
Hypotheses
Ref Expression
syl6an.1  |-  ( ph  ->  ps )
syl6an.2  |-  ( ph  ->  ( ch  ->  th )
)
syl6an.3  |-  ( ( ps  /\  th )  ->  ta )
Assertion
Ref Expression
syl6an  |-  ( ph  ->  ( ch  ->  ta ) )

Proof of Theorem syl6an
StepHypRef Expression
1 syl6an.2 . . 3  |-  ( ph  ->  ( ch  ->  th )
)
2 syl6an.1 . . 3  |-  ( ph  ->  ps )
31, 2jctild 309 . 2  |-  ( ph  ->  ( ch  ->  ( ps  /\  th ) ) )
4 syl6an.3 . 2  |-  ( ( ps  /\  th )  ->  ta )
53, 4syl6 33 1  |-  ( ph  ->  ( ch  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 106
This theorem is referenced by:  mapxpen  6554  prarloclem5  7049  ltsopr  7145  nominpos  8643  ublbneg  9088  absle  10510  rexanre  10641  rexico  10642  climshftlemg  10677  serf0  10728  dvds1lem  11072  dvds2lem  11073  bj-indind  11710
  Copyright terms: Public domain W3C validator