ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6an Unicode version

Theorem syl6an 1454
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
Hypotheses
Ref Expression
syl6an.1  |-  ( ph  ->  ps )
syl6an.2  |-  ( ph  ->  ( ch  ->  th )
)
syl6an.3  |-  ( ( ps  /\  th )  ->  ta )
Assertion
Ref Expression
syl6an  |-  ( ph  ->  ( ch  ->  ta ) )

Proof of Theorem syl6an
StepHypRef Expression
1 syl6an.2 . . 3  |-  ( ph  ->  ( ch  ->  th )
)
2 syl6an.1 . . 3  |-  ( ph  ->  ps )
31, 2jctild 316 . 2  |-  ( ph  ->  ( ch  ->  ( ps  /\  th ) ) )
4 syl6an.3 . 2  |-  ( ( ps  /\  th )  ->  ta )
53, 4syl6 33 1  |-  ( ph  ->  ( ch  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  mapxpen  6960  prarloclem5  7633  ltsopr  7729  suplocsrlem  7941  nominpos  9295  ublbneg  9754  wrdsymb0  11048  ccats1pfxeqrex  11191  absle  11475  rexanre  11606  rexico  11607  climshftlemg  11688  serf0  11738  dvds1lem  12188  dvds2lem  12189  lmconst  14763  addcncntoplem  15108  bj-indind  16006
  Copyright terms: Public domain W3C validator