ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir Unicode version

Theorem lgsdir 15512
Description: The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that  A and  B are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )

Proof of Theorem lgsdir
Dummy variables  k  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1cnd 8088 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  CC )
2 0cnd 8065 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  CC )
3 zsqcl 10755 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
433ad2ant2 1022 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B ^ 2 )  e.  ZZ )
5 1z 9398 . . . . . . . . 9  |-  1  e.  ZZ
6 zdceq 9448 . . . . . . . . 9  |-  ( ( ( B ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( B ^ 2 )  =  1 )
74, 5, 6sylancl 413 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( B ^ 2 )  =  1 )
81, 2, 7ifcldcd 3608 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( B ^
2 )  =  1 ,  1 ,  0 )  e.  CC )
98mulid2d 8091 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
109ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
11 iftrue 3576 . . . . . . 7  |-  ( ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  1 )
1211adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  =  1 )
1312oveq1d 5959 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  ( 1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
14 simpl1 1003 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  ZZ )
1514zcnd 9496 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  CC )
1615ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  A  e.  CC )
17 simpl2 1004 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  ZZ )
1817zcnd 9496 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  CC )
1918ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  B  e.  CC )
2016, 19sqmuld 10830 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  x.  B ) ^ 2 )  =  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )
21 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( A ^ 2 )  =  1 )
2221oveq1d 5959 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A ^ 2 )  x.  ( B ^ 2 ) )  =  ( 1  x.  ( B ^ 2 ) ) )
2318sqcld 10816 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( B ^ 2 )  e.  CC )
2423ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( B ^ 2 )  e.  CC )
2524mulid2d 8091 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( B ^
2 ) )  =  ( B ^ 2 ) )
2620, 22, 253eqtrd 2242 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  x.  B ) ^ 2 )  =  ( B ^ 2 ) )
2726eqeq1d 2214 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( (
( A  x.  B
) ^ 2 )  =  1  <->  ( B ^ 2 )  =  1 ) )
2827ifbid 3592 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  if (
( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
2910, 13, 283eqtr4d 2248 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
308mul02d 8464 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  0 )
3130ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  (
0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  0 )
32 iffalse 3579 . . . . . . 7  |-  ( -.  ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3332adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3433oveq1d 5959 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  ( 0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
35 dvdsmul1 12124 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
3614, 17, 35syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  ||  ( A  x.  B
) )
3714, 17zmulcld 9501 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  x.  B )  e.  ZZ )
38 dvdssq 12352 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( A  x.  B
)  e.  ZZ )  ->  ( A  ||  ( A  x.  B
)  <->  ( A ^
2 )  ||  (
( A  x.  B
) ^ 2 ) ) )
3914, 37, 38syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  ||  ( A  x.  B )  <->  ( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 ) ) )
4036, 39mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 ) )
4140adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  ||  (
( A  x.  B
) ^ 2 ) )
42 breq2 4048 . . . . . . . . 9  |-  ( ( ( A  x.  B
) ^ 2 )  =  1  ->  (
( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 )  <->  ( A ^ 2 )  ||  1 ) )
4341, 42syl5ibcom 155 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( ( A  x.  B ) ^ 2 )  =  1  ->  ( A ^ 2 )  ||  1 ) )
44 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  =/=  0 )
4544neneqd 2397 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  -.  A  =  0 )
46 sqeq0 10747 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
4715, 46syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
4845, 47mtbird 675 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  -.  ( A ^ 2 )  =  0 )
49 zsqcl2 10762 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e. 
NN0 )
5014, 49syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  e. 
NN0 )
51 elnn0 9297 . . . . . . . . . . . . . . 15  |-  ( ( A ^ 2 )  e.  NN0  <->  ( ( A ^ 2 )  e.  NN  \/  ( A ^ 2 )  =  0 ) )
5250, 51sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A ^ 2 )  e.  NN  \/  ( A ^ 2 )  =  0 ) )
5348, 52ecased 1362 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  e.  NN )
5453adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  NN )
5554nnzd 9494 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  ZZ )
56 1nn 9047 . . . . . . . . . . 11  |-  1  e.  NN
57 dvdsle 12155 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  NN )  ->  ( ( A ^
2 )  ||  1  ->  ( A ^ 2 )  <_  1 ) )
5855, 56, 57sylancl 413 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( A ^
2 )  <_  1
) )
5954nnge1d 9079 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  1  <_  ( A ^ 2 ) )
6058, 59jctird 317 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( ( A ^ 2 )  <_ 
1  /\  1  <_  ( A ^ 2 ) ) ) )
6154nnred 9049 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  RR )
62 1re 8071 . . . . . . . . . 10  |-  1  e.  RR
63 letri3 8153 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  RR  /\  1  e.  RR )  ->  ( ( A ^
2 )  =  1  <-> 
( ( A ^
2 )  <_  1  /\  1  <_  ( A ^ 2 ) ) ) )
6461, 62, 63sylancl 413 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  <_ 
1  /\  1  <_  ( A ^ 2 ) ) ) )
6560, 64sylibrd 169 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( A ^
2 )  =  1 ) )
6643, 65syld 45 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( ( A  x.  B ) ^ 2 )  =  1  ->  ( A ^ 2 )  =  1 ) )
6766con3dimp 636 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  -.  ( ( A  x.  B ) ^ 2 )  =  1 )
6867iffalsed 3581 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  if ( ( ( A  x.  B ) ^
2 )  =  1 ,  1 ,  0 )  =  0 )
6931, 34, 683eqtr4d 2248 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
70 zdceq 9448 . . . . . 6  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
7155, 5, 70sylancl 413 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  -> DECID 
( A ^ 2 )  =  1 )
72 exmiddc 838 . . . . 5  |-  (DECID  ( A ^ 2 )  =  1  ->  ( ( A ^ 2 )  =  1  \/  -.  ( A ^ 2 )  =  1 ) )
7371, 72syl 14 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  =  1  \/  -.  ( A ^ 2 )  =  1 ) )
7429, 69, 73mpjaodan 800 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B
) ^ 2 )  =  1 ,  1 ,  0 ) )
75 oveq2 5952 . . . . 5  |-  ( N  =  0  ->  ( A  /L N )  =  ( A  /L 0 ) )
76 lgs0 15490 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
7714, 76syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
7875, 77sylan9eqr 2260 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A  /L N )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
79 oveq2 5952 . . . . 5  |-  ( N  =  0  ->  ( B  /L N )  =  ( B  /L 0 ) )
80 lgs0 15490 . . . . . 6  |-  ( B  e.  ZZ  ->  ( B  /L 0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8117, 80syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( B  /L 0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8279, 81sylan9eqr 2260 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( B  /L N )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8378, 82oveq12d 5962 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
84 oveq2 5952 . . . 4  |-  ( N  =  0  ->  (
( A  x.  B
)  /L N )  =  ( ( A  x.  B )  /L 0 ) )
85 lgs0 15490 . . . . 5  |-  ( ( A  x.  B )  e.  ZZ  ->  (
( A  x.  B
)  /L 0 )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8637, 85syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L 0 )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8784, 86sylan9eqr 2260 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  x.  B )  /L N )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8874, 83, 873eqtr4rd 2249 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
89 lgsdilem 15504 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
9089adantr 276 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
91 simpl3 1005 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  N  e.  ZZ )
92 nnabscl 11411 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
9391, 92sylan 283 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
94 nnuz 9684 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
9593, 94eleqtrdi 2298 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  ( ZZ>= ` 
1 ) )
96 simpll1 1039 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  A  e.  ZZ )
97 simpll3 1041 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  N  e.  ZZ )
98 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  N  =/=  0 )
99 eqid 2205 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
10099lgsfcl3 15498 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
10196, 97, 98, 100syl3anc 1250 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
102 elnnuz 9685 . . . . . . . 8  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
103102biimpri 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
104 ffvelcdm 5713 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
105101, 103, 104syl2an 289 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
106105zcnd 9496 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
107 simpll2 1040 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  B  e.  ZZ )
108 eqid 2205 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
109108lgsfcl3 15498 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
110107, 97, 98, 109syl3anc 1250 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
111 ffvelcdm 5713 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
112110, 103, 111syl2an 289 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
113112zcnd 9496 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
11496adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  A  e.  ZZ )
115107adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  B  e.  ZZ )
116 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
k  e.  Prime )
117 lgsdirprm 15511 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  k  e.  Prime )  ->  (
( A  x.  B
)  /L k )  =  ( ( A  /L k )  x.  ( B  /L k ) ) )
118114, 115, 116, 117syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( A  x.  B )  /L
k )  =  ( ( A  /L
k )  x.  ( B  /L k ) ) )
119118oveq1d 5959 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  =  ( ( ( A  /L k )  x.  ( B  /L
k ) ) ^
( k  pCnt  N
) ) )
120 prmz 12433 . . . . . . . . . . . . 13  |-  ( k  e.  Prime  ->  k  e.  ZZ )
121 lgscl 15491 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
12296, 120, 121syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
123122zcnd 9496 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  CC )
124 lgscl 15491 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  k  e.  ZZ )  ->  ( B  /L
k )  e.  ZZ )
125107, 120, 124syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  ZZ )
126125zcnd 9496 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  CC )
12797adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  N  e.  ZZ )
12898adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  N  =/=  0 )
129 pczcl 12621 . . . . . . . . . . . 12  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
130116, 127, 128, 129syl12anc 1248 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
131123, 126, 130mulexpd 10833 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  /L k )  x.  ( B  /L k ) ) ^ ( k  pCnt  N ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
132119, 131eqtrd 2238 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
133 iftrue 3576 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( ( A  x.  B )  /L k ) ^ ( k  pCnt  N ) ) )
134133adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) )
135 iftrue 3576 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  N ) ) )
136 iftrue 3576 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( B  /L k ) ^ ( k  pCnt  N ) ) )
137135, 136oveq12d 5962 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( ( ( A  /L
k ) ^ (
k  pCnt  N )
)  x.  ( ( B  /L k ) ^ ( k 
pCnt  N ) ) ) )
138137adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
139132, 134, 1383eqtr4d 2248 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
140139adantlr 477 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
141 1t1e1 9189 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
142141eqcomi 2209 . . . . . . . . 9  |-  1  =  ( 1  x.  1 )
143 iffalse 3579 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
144 iffalse 3579 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
145 iffalse 3579 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
146144, 145oveq12d 5962 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( 1  x.  1 ) )
147142, 143, 1463eqtr4a 2264 . . . . . . . 8  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
148147adantl 277 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) ,  1 )  =  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
149103adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
k  e.  NN )
150 prmdc 12452 . . . . . . . . 9  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
151149, 150syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> DECID  k  e.  Prime )
152 exmiddc 838 . . . . . . . 8  |-  (DECID  k  e. 
Prime  ->  ( k  e. 
Prime  \/  -.  k  e. 
Prime ) )
153151, 152syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( k  e.  Prime  \/ 
-.  k  e.  Prime ) )
154140, 148, 153mpjaodan 800 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
155 eqid 2205 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
156 eleq1w 2266 . . . . . . . 8  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
157 oveq2 5952 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  x.  B
)  /L n )  =  ( ( A  x.  B )  /L k ) )
158 oveq1 5951 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
159157, 158oveq12d 5962 . . . . . . . 8  |-  ( n  =  k  ->  (
( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) )
160156, 159ifbieq1d 3593 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
16137ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  x.  B
)  e.  ZZ )
162120adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  ZZ )
163 lgscl 15491 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( A  x.  B )  /L
k )  e.  ZZ )
164161, 162, 163syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  x.  B )  /L
k )  e.  ZZ )
165130adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
166 zexpcl 10699 . . . . . . . . 9  |-  ( ( ( ( A  x.  B )  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
167164, 165, 166syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
168 1zzd 9399 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  1  e.  ZZ )
169167, 168, 151ifcldadc 3600 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
170155, 160, 149, 169fvmptd3 5673 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
171 oveq2 5952 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
172171, 158oveq12d 5962 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) )
173156, 172ifbieq1d 3593 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
174122adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
175 zexpcl 10699 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
176174, 165, 175syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
177176, 168, 151ifcldadc 3600 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
17899, 173, 149, 177fvmptd3 5673 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
179 oveq2 5952 . . . . . . . . . 10  |-  ( n  =  k  ->  ( B  /L n )  =  ( B  /L k ) )
180179, 158oveq12d 5962 . . . . . . . . 9  |-  ( n  =  k  ->  (
( B  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( B  /L k ) ^ ( k 
pCnt  N ) ) )
181156, 180ifbieq1d 3593 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
182125adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  ZZ )
183 zexpcl 10699 . . . . . . . . . 10  |-  ( ( ( B  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( B  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
184182, 165, 183syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( B  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
185184, 168, 151ifcldadc 3600 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
186108, 181, 149, 185fvmptd3 5673 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
187178, 186oveq12d 5962 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
188154, 170, 1873eqtr4d 2248 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  x.  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
) ) )
18995, 106, 113, 188prod3fmul 11852 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19090, 189oveq12d 5962 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( if ( ( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 ) )  x.  ( (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
19137adantr 276 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( A  x.  B
)  e.  ZZ )
192155lgsval4 15497 . . . 4  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  x.  B
)  /L N )  =  ( if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
193191, 97, 98, 192syl3anc 1250 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  x.  B )  /L
N )  =  ( if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19499lgsval4 15497 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19596, 97, 98, 194syl3anc 1250 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( A  /L
N )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
196108lgsval4 15497 . . . . . 6  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( B  /L N )  =  ( if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
197107, 97, 98, 196syl3anc 1250 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( B  /L
N )  =  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
198195, 197oveq12d 5962 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  /L N )  x.  ( B  /L
N ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) )  x.  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
199 neg1cn 9141 . . . . . . 7  |-  -u 1  e.  CC
200199a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  -u 1  e.  CC )
201 1cnd 8088 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
1  e.  CC )
202 0z 9383 . . . . . . . 8  |-  0  e.  ZZ
203 zdclt 9450 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
20497, 202, 203sylancl 413 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  N  <  0 )
205 zdclt 9450 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
20696, 202, 205sylancl 413 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  A  <  0 )
207 dcan2 937 . . . . . . 7  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
208204, 206, 207sylc 62 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  ( N  <  0  /\  A  <  0 ) )
209200, 201, 208ifcldcd 3608 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
210 1zzd 9399 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
1  e.  ZZ )
211101ffvelcdmda 5715 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
212 zmulcl 9426 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
213212adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( k  x.  v )  e.  ZZ )
21494, 210, 211, 213seqf 10609 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
215214, 93ffvelcdmd 5716 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  ZZ )
216215zcnd 9496 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  CC )
217 neg1z 9404 . . . . . . . 8  |-  -u 1  e.  ZZ
218217a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  -u 1  e.  ZZ )
219 zdclt 9450 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  <  0 )
220107, 202, 219sylancl 413 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  B  <  0 )
221 dcan2 937 . . . . . . . 8  |-  (DECID  N  <  0  ->  (DECID  B  <  0  -> DECID 
( N  <  0  /\  B  <  0
) ) )
222204, 220, 221sylc 62 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  ( N  <  0  /\  B  <  0 ) )
223218, 210, 222ifcldcd 3608 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
224223zcnd 9496 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  e.  CC )
225110ffvelcdmda 5715 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
22694, 210, 225, 213seqf 10609 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
227226, 93ffvelcdmd 5716 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  ZZ )
228227zcnd 9496 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  CC )
229209, 216, 224, 228mul4d 8227 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) )  x.  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
230198, 229eqtrd 2238 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  /L N )  x.  ( B  /L
N ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
231190, 193, 2303eqtr4d 2248 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  x.  B )  /L
N )  =  ( ( A  /L
N )  x.  ( B  /L N ) ) )
232 zdceq 9448 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
23391, 202, 232sylancl 413 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  -> DECID  N  =  0
)
234 dcne 2387 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
235233, 234sylib 122 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( N  =  0  \/  N  =/=  0 ) )
23688, 231, 235mpjaodan 800 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176    =/= wne 2376   ifcif 3571   class class class wbr 4044    |-> cmpt 4105   -->wf 5267   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    x. cmul 7930    < clt 8107    <_ cle 8108   -ucneg 8244   NNcn 9036   2c2 9087   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648    seqcseq 10592   ^cexp 10683   abscabs 11308    || cdvds 12098   Primecprime 12429    pCnt cpc 12607    /Lclgs 15474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-2o 6503  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-proddc 11862  df-dvds 12099  df-gcd 12275  df-prm 12430  df-phi 12533  df-pc 12608  df-lgs 15475
This theorem is referenced by:  lgssq  15517  lgsmulsqcoprm  15523  lgsdirnn0  15524  lgsquad2lem1  15558
  Copyright terms: Public domain W3C validator