ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir Unicode version

Theorem lgsdir 15714
Description: The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that  A and  B are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )

Proof of Theorem lgsdir
Dummy variables  k  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1cnd 8162 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  CC )
2 0cnd 8139 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  CC )
3 zsqcl 10832 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
433ad2ant2 1043 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B ^ 2 )  e.  ZZ )
5 1z 9472 . . . . . . . . 9  |-  1  e.  ZZ
6 zdceq 9522 . . . . . . . . 9  |-  ( ( ( B ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( B ^ 2 )  =  1 )
74, 5, 6sylancl 413 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( B ^ 2 )  =  1 )
81, 2, 7ifcldcd 3640 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( B ^
2 )  =  1 ,  1 ,  0 )  e.  CC )
98mulid2d 8165 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
109ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
11 iftrue 3607 . . . . . . 7  |-  ( ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  1 )
1211adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  =  1 )
1312oveq1d 6016 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  ( 1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
14 simpl1 1024 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  ZZ )
1514zcnd 9570 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  CC )
1615ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  A  e.  CC )
17 simpl2 1025 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  ZZ )
1817zcnd 9570 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  CC )
1918ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  B  e.  CC )
2016, 19sqmuld 10907 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  x.  B ) ^ 2 )  =  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )
21 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( A ^ 2 )  =  1 )
2221oveq1d 6016 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A ^ 2 )  x.  ( B ^ 2 ) )  =  ( 1  x.  ( B ^ 2 ) ) )
2318sqcld 10893 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( B ^ 2 )  e.  CC )
2423ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( B ^ 2 )  e.  CC )
2524mulid2d 8165 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( B ^
2 ) )  =  ( B ^ 2 ) )
2620, 22, 253eqtrd 2266 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  x.  B ) ^ 2 )  =  ( B ^ 2 ) )
2726eqeq1d 2238 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( (
( A  x.  B
) ^ 2 )  =  1  <->  ( B ^ 2 )  =  1 ) )
2827ifbid 3624 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  if (
( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
2910, 13, 283eqtr4d 2272 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
308mul02d 8538 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  0 )
3130ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  (
0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  0 )
32 iffalse 3610 . . . . . . 7  |-  ( -.  ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3332adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3433oveq1d 6016 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  ( 0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
35 dvdsmul1 12324 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
3614, 17, 35syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  ||  ( A  x.  B
) )
3714, 17zmulcld 9575 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  x.  B )  e.  ZZ )
38 dvdssq 12552 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( A  x.  B
)  e.  ZZ )  ->  ( A  ||  ( A  x.  B
)  <->  ( A ^
2 )  ||  (
( A  x.  B
) ^ 2 ) ) )
3914, 37, 38syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  ||  ( A  x.  B )  <->  ( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 ) ) )
4036, 39mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 ) )
4140adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  ||  (
( A  x.  B
) ^ 2 ) )
42 breq2 4087 . . . . . . . . 9  |-  ( ( ( A  x.  B
) ^ 2 )  =  1  ->  (
( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 )  <->  ( A ^ 2 )  ||  1 ) )
4341, 42syl5ibcom 155 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( ( A  x.  B ) ^ 2 )  =  1  ->  ( A ^ 2 )  ||  1 ) )
44 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  =/=  0 )
4544neneqd 2421 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  -.  A  =  0 )
46 sqeq0 10824 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
4715, 46syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
4845, 47mtbird 677 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  -.  ( A ^ 2 )  =  0 )
49 zsqcl2 10839 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e. 
NN0 )
5014, 49syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  e. 
NN0 )
51 elnn0 9371 . . . . . . . . . . . . . . 15  |-  ( ( A ^ 2 )  e.  NN0  <->  ( ( A ^ 2 )  e.  NN  \/  ( A ^ 2 )  =  0 ) )
5250, 51sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A ^ 2 )  e.  NN  \/  ( A ^ 2 )  =  0 ) )
5348, 52ecased 1383 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  e.  NN )
5453adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  NN )
5554nnzd 9568 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  ZZ )
56 1nn 9121 . . . . . . . . . . 11  |-  1  e.  NN
57 dvdsle 12355 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  NN )  ->  ( ( A ^
2 )  ||  1  ->  ( A ^ 2 )  <_  1 ) )
5855, 56, 57sylancl 413 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( A ^
2 )  <_  1
) )
5954nnge1d 9153 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  1  <_  ( A ^ 2 ) )
6058, 59jctird 317 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( ( A ^ 2 )  <_ 
1  /\  1  <_  ( A ^ 2 ) ) ) )
6154nnred 9123 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  RR )
62 1re 8145 . . . . . . . . . 10  |-  1  e.  RR
63 letri3 8227 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  RR  /\  1  e.  RR )  ->  ( ( A ^
2 )  =  1  <-> 
( ( A ^
2 )  <_  1  /\  1  <_  ( A ^ 2 ) ) ) )
6461, 62, 63sylancl 413 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  <_ 
1  /\  1  <_  ( A ^ 2 ) ) ) )
6560, 64sylibrd 169 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( A ^
2 )  =  1 ) )
6643, 65syld 45 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( ( A  x.  B ) ^ 2 )  =  1  ->  ( A ^ 2 )  =  1 ) )
6766con3dimp 638 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  -.  ( ( A  x.  B ) ^ 2 )  =  1 )
6867iffalsed 3612 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  if ( ( ( A  x.  B ) ^
2 )  =  1 ,  1 ,  0 )  =  0 )
6931, 34, 683eqtr4d 2272 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
70 zdceq 9522 . . . . . 6  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
7155, 5, 70sylancl 413 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  -> DECID 
( A ^ 2 )  =  1 )
72 exmiddc 841 . . . . 5  |-  (DECID  ( A ^ 2 )  =  1  ->  ( ( A ^ 2 )  =  1  \/  -.  ( A ^ 2 )  =  1 ) )
7371, 72syl 14 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  =  1  \/  -.  ( A ^ 2 )  =  1 ) )
7429, 69, 73mpjaodan 803 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B
) ^ 2 )  =  1 ,  1 ,  0 ) )
75 oveq2 6009 . . . . 5  |-  ( N  =  0  ->  ( A  /L N )  =  ( A  /L 0 ) )
76 lgs0 15692 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
7714, 76syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
7875, 77sylan9eqr 2284 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A  /L N )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
79 oveq2 6009 . . . . 5  |-  ( N  =  0  ->  ( B  /L N )  =  ( B  /L 0 ) )
80 lgs0 15692 . . . . . 6  |-  ( B  e.  ZZ  ->  ( B  /L 0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8117, 80syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( B  /L 0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8279, 81sylan9eqr 2284 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( B  /L N )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8378, 82oveq12d 6019 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
84 oveq2 6009 . . . 4  |-  ( N  =  0  ->  (
( A  x.  B
)  /L N )  =  ( ( A  x.  B )  /L 0 ) )
85 lgs0 15692 . . . . 5  |-  ( ( A  x.  B )  e.  ZZ  ->  (
( A  x.  B
)  /L 0 )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8637, 85syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L 0 )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8784, 86sylan9eqr 2284 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  x.  B )  /L N )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8874, 83, 873eqtr4rd 2273 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
89 lgsdilem 15706 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
9089adantr 276 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
91 simpl3 1026 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  N  e.  ZZ )
92 nnabscl 11611 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
9391, 92sylan 283 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
94 nnuz 9758 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
9593, 94eleqtrdi 2322 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  ( ZZ>= ` 
1 ) )
96 simpll1 1060 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  A  e.  ZZ )
97 simpll3 1062 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  N  e.  ZZ )
98 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  N  =/=  0 )
99 eqid 2229 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
10099lgsfcl3 15700 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
10196, 97, 98, 100syl3anc 1271 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
102 elnnuz 9759 . . . . . . . 8  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
103102biimpri 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
104 ffvelcdm 5768 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
105101, 103, 104syl2an 289 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
106105zcnd 9570 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
107 simpll2 1061 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  B  e.  ZZ )
108 eqid 2229 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
109108lgsfcl3 15700 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
110107, 97, 98, 109syl3anc 1271 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
111 ffvelcdm 5768 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
112110, 103, 111syl2an 289 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
113112zcnd 9570 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
11496adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  A  e.  ZZ )
115107adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  B  e.  ZZ )
116 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
k  e.  Prime )
117 lgsdirprm 15713 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  k  e.  Prime )  ->  (
( A  x.  B
)  /L k )  =  ( ( A  /L k )  x.  ( B  /L k ) ) )
118114, 115, 116, 117syl3anc 1271 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( A  x.  B )  /L
k )  =  ( ( A  /L
k )  x.  ( B  /L k ) ) )
119118oveq1d 6016 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  =  ( ( ( A  /L k )  x.  ( B  /L
k ) ) ^
( k  pCnt  N
) ) )
120 prmz 12633 . . . . . . . . . . . . 13  |-  ( k  e.  Prime  ->  k  e.  ZZ )
121 lgscl 15693 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
12296, 120, 121syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
123122zcnd 9570 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  CC )
124 lgscl 15693 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  k  e.  ZZ )  ->  ( B  /L
k )  e.  ZZ )
125107, 120, 124syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  ZZ )
126125zcnd 9570 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  CC )
12797adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  N  e.  ZZ )
12898adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  N  =/=  0 )
129 pczcl 12821 . . . . . . . . . . . 12  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
130116, 127, 128, 129syl12anc 1269 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
131123, 126, 130mulexpd 10910 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  /L k )  x.  ( B  /L k ) ) ^ ( k  pCnt  N ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
132119, 131eqtrd 2262 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
133 iftrue 3607 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( ( A  x.  B )  /L k ) ^ ( k  pCnt  N ) ) )
134133adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) )
135 iftrue 3607 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  N ) ) )
136 iftrue 3607 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( B  /L k ) ^ ( k  pCnt  N ) ) )
137135, 136oveq12d 6019 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( ( ( A  /L
k ) ^ (
k  pCnt  N )
)  x.  ( ( B  /L k ) ^ ( k 
pCnt  N ) ) ) )
138137adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
139132, 134, 1383eqtr4d 2272 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
140139adantlr 477 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
141 1t1e1 9263 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
142141eqcomi 2233 . . . . . . . . 9  |-  1  =  ( 1  x.  1 )
143 iffalse 3610 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
144 iffalse 3610 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
145 iffalse 3610 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
146144, 145oveq12d 6019 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( 1  x.  1 ) )
147142, 143, 1463eqtr4a 2288 . . . . . . . 8  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
148147adantl 277 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) ,  1 )  =  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
149103adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
k  e.  NN )
150 prmdc 12652 . . . . . . . . 9  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
151149, 150syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> DECID  k  e.  Prime )
152 exmiddc 841 . . . . . . . 8  |-  (DECID  k  e. 
Prime  ->  ( k  e. 
Prime  \/  -.  k  e. 
Prime ) )
153151, 152syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( k  e.  Prime  \/ 
-.  k  e.  Prime ) )
154140, 148, 153mpjaodan 803 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
155 eqid 2229 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
156 eleq1w 2290 . . . . . . . 8  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
157 oveq2 6009 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  x.  B
)  /L n )  =  ( ( A  x.  B )  /L k ) )
158 oveq1 6008 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
159157, 158oveq12d 6019 . . . . . . . 8  |-  ( n  =  k  ->  (
( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) )
160156, 159ifbieq1d 3625 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
16137ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  x.  B
)  e.  ZZ )
162120adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  ZZ )
163 lgscl 15693 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( A  x.  B )  /L
k )  e.  ZZ )
164161, 162, 163syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  x.  B )  /L
k )  e.  ZZ )
165130adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
166 zexpcl 10776 . . . . . . . . 9  |-  ( ( ( ( A  x.  B )  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
167164, 165, 166syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
168 1zzd 9473 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  1  e.  ZZ )
169167, 168, 151ifcldadc 3632 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
170155, 160, 149, 169fvmptd3 5728 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
171 oveq2 6009 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
172171, 158oveq12d 6019 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) )
173156, 172ifbieq1d 3625 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
174122adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
175 zexpcl 10776 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
176174, 165, 175syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
177176, 168, 151ifcldadc 3632 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
17899, 173, 149, 177fvmptd3 5728 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
179 oveq2 6009 . . . . . . . . . 10  |-  ( n  =  k  ->  ( B  /L n )  =  ( B  /L k ) )
180179, 158oveq12d 6019 . . . . . . . . 9  |-  ( n  =  k  ->  (
( B  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( B  /L k ) ^ ( k 
pCnt  N ) ) )
181156, 180ifbieq1d 3625 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
182125adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  ZZ )
183 zexpcl 10776 . . . . . . . . . 10  |-  ( ( ( B  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( B  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
184182, 165, 183syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( B  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
185184, 168, 151ifcldadc 3632 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
186108, 181, 149, 185fvmptd3 5728 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
187178, 186oveq12d 6019 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
188154, 170, 1873eqtr4d 2272 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  x.  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
) ) )
18995, 106, 113, 188prod3fmul 12052 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19090, 189oveq12d 6019 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( if ( ( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 ) )  x.  ( (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
19137adantr 276 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( A  x.  B
)  e.  ZZ )
192155lgsval4 15699 . . . 4  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  x.  B
)  /L N )  =  ( if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
193191, 97, 98, 192syl3anc 1271 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  x.  B )  /L
N )  =  ( if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19499lgsval4 15699 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19596, 97, 98, 194syl3anc 1271 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( A  /L
N )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
196108lgsval4 15699 . . . . . 6  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( B  /L N )  =  ( if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
197107, 97, 98, 196syl3anc 1271 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( B  /L
N )  =  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
198195, 197oveq12d 6019 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  /L N )  x.  ( B  /L
N ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) )  x.  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
199 neg1cn 9215 . . . . . . 7  |-  -u 1  e.  CC
200199a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  -u 1  e.  CC )
201 1cnd 8162 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
1  e.  CC )
202 0z 9457 . . . . . . . 8  |-  0  e.  ZZ
203 zdclt 9524 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
20497, 202, 203sylancl 413 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  N  <  0 )
205 zdclt 9524 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
20696, 202, 205sylancl 413 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  A  <  0 )
207 dcan2 940 . . . . . . 7  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
208204, 206, 207sylc 62 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  ( N  <  0  /\  A  <  0 ) )
209200, 201, 208ifcldcd 3640 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
210 1zzd 9473 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
1  e.  ZZ )
211101ffvelcdmda 5770 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
212 zmulcl 9500 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
213212adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( k  x.  v )  e.  ZZ )
21494, 210, 211, 213seqf 10686 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
215214, 93ffvelcdmd 5771 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  ZZ )
216215zcnd 9570 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  CC )
217 neg1z 9478 . . . . . . . 8  |-  -u 1  e.  ZZ
218217a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  -u 1  e.  ZZ )
219 zdclt 9524 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  <  0 )
220107, 202, 219sylancl 413 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  B  <  0 )
221 dcan2 940 . . . . . . . 8  |-  (DECID  N  <  0  ->  (DECID  B  <  0  -> DECID 
( N  <  0  /\  B  <  0
) ) )
222204, 220, 221sylc 62 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  ( N  <  0  /\  B  <  0 ) )
223218, 210, 222ifcldcd 3640 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
224223zcnd 9570 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  e.  CC )
225110ffvelcdmda 5770 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
22694, 210, 225, 213seqf 10686 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
227226, 93ffvelcdmd 5771 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  ZZ )
228227zcnd 9570 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  CC )
229209, 216, 224, 228mul4d 8301 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) )  x.  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
230198, 229eqtrd 2262 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  /L N )  x.  ( B  /L
N ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
231190, 193, 2303eqtr4d 2272 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  x.  B )  /L
N )  =  ( ( A  /L
N )  x.  ( B  /L N ) ) )
232 zdceq 9522 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
23391, 202, 232sylancl 413 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  -> DECID  N  =  0
)
234 dcne 2411 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
235233, 234sylib 122 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( N  =  0  \/  N  =/=  0 ) )
23688, 231, 235mpjaodan 803 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    x. cmul 8004    < clt 8181    <_ cle 8182   -ucneg 8318   NNcn 9110   2c2 9161   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722    seqcseq 10669   ^cexp 10760   abscabs 11508    || cdvds 12298   Primecprime 12629    pCnt cpc 12807    /Lclgs 15676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-2o 6563  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-proddc 12062  df-dvds 12299  df-gcd 12475  df-prm 12630  df-phi 12733  df-pc 12808  df-lgs 15677
This theorem is referenced by:  lgssq  15719  lgsmulsqcoprm  15725  lgsdirnn0  15726  lgsquad2lem1  15760
  Copyright terms: Public domain W3C validator