ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsdir Unicode version

Theorem lgsdir 14439
Description: The Legendre symbol is completely multiplicative in its left argument. Generalization of theorem 9.9(a) in [ApostolNT] p. 188 (which assumes that  A and  B are odd positive integers). (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )

Proof of Theorem lgsdir
Dummy variables  k  n  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1cnd 7973 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  CC )
2 0cnd 7950 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  CC )
3 zsqcl 10591 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
433ad2ant2 1019 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  ( B ^ 2 )  e.  ZZ )
5 1z 9279 . . . . . . . . 9  |-  1  e.  ZZ
6 zdceq 9328 . . . . . . . . 9  |-  ( ( ( B ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( B ^ 2 )  =  1 )
74, 5, 6sylancl 413 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( B ^ 2 )  =  1 )
81, 2, 7ifcldcd 3571 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  if ( ( B ^
2 )  =  1 ,  1 ,  0 )  e.  CC )
98mulid2d 7976 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
109ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
11 iftrue 3540 . . . . . . 7  |-  ( ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  1 )
1211adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  =  1 )
1312oveq1d 5890 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  ( 1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
14 simpl1 1000 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  ZZ )
1514zcnd 9376 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  CC )
1615ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  A  e.  CC )
17 simpl2 1001 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  ZZ )
1817zcnd 9376 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  CC )
1918ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  B  e.  CC )
2016, 19sqmuld 10666 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  x.  B ) ^ 2 )  =  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )
21 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( A ^ 2 )  =  1 )
2221oveq1d 5890 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A ^ 2 )  x.  ( B ^ 2 ) )  =  ( 1  x.  ( B ^ 2 ) ) )
2318sqcld 10652 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( B ^ 2 )  e.  CC )
2423ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( B ^ 2 )  e.  CC )
2524mulid2d 7976 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( B ^
2 ) )  =  ( B ^ 2 ) )
2620, 22, 253eqtrd 2214 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  x.  B ) ^ 2 )  =  ( B ^ 2 ) )
2726eqeq1d 2186 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( (
( A  x.  B
) ^ 2 )  =  1  <->  ( B ^ 2 )  =  1 ) )
2827ifbid 3556 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  if (
( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
2910, 13, 283eqtr4d 2220 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
308mul02d 8349 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  0 )
3130ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  (
0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  0 )
32 iffalse 3543 . . . . . . 7  |-  ( -.  ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3332adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
3433oveq1d 5890 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  ( 0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
35 dvdsmul1 11820 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
3614, 17, 35syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  ||  ( A  x.  B
) )
3714, 17zmulcld 9381 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  x.  B )  e.  ZZ )
38 dvdssq 12032 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( A  x.  B
)  e.  ZZ )  ->  ( A  ||  ( A  x.  B
)  <->  ( A ^
2 )  ||  (
( A  x.  B
) ^ 2 ) ) )
3914, 37, 38syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  ||  ( A  x.  B )  <->  ( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 ) ) )
4036, 39mpbid 147 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 ) )
4140adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  ||  (
( A  x.  B
) ^ 2 ) )
42 breq2 4008 . . . . . . . . 9  |-  ( ( ( A  x.  B
) ^ 2 )  =  1  ->  (
( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 )  <->  ( A ^ 2 )  ||  1 ) )
4341, 42syl5ibcom 155 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( ( A  x.  B ) ^ 2 )  =  1  ->  ( A ^ 2 )  ||  1 ) )
44 simprl 529 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  =/=  0 )
4544neneqd 2368 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  -.  A  =  0 )
46 sqeq0 10583 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
4715, 46syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
4845, 47mtbird 673 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  -.  ( A ^ 2 )  =  0 )
49 zsqcl2 10598 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e. 
NN0 )
5014, 49syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  e. 
NN0 )
51 elnn0 9178 . . . . . . . . . . . . . . 15  |-  ( ( A ^ 2 )  e.  NN0  <->  ( ( A ^ 2 )  e.  NN  \/  ( A ^ 2 )  =  0 ) )
5250, 51sylib 122 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A ^ 2 )  e.  NN  \/  ( A ^ 2 )  =  0 ) )
5348, 52ecased 1349 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  e.  NN )
5453adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  NN )
5554nnzd 9374 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  ZZ )
56 1nn 8930 . . . . . . . . . . 11  |-  1  e.  NN
57 dvdsle 11850 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  NN )  ->  ( ( A ^
2 )  ||  1  ->  ( A ^ 2 )  <_  1 ) )
5855, 56, 57sylancl 413 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( A ^
2 )  <_  1
) )
5954nnge1d 8962 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  1  <_  ( A ^ 2 ) )
6058, 59jctird 317 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( ( A ^ 2 )  <_ 
1  /\  1  <_  ( A ^ 2 ) ) ) )
6154nnred 8932 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  RR )
62 1re 7956 . . . . . . . . . 10  |-  1  e.  RR
63 letri3 8038 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  RR  /\  1  e.  RR )  ->  ( ( A ^
2 )  =  1  <-> 
( ( A ^
2 )  <_  1  /\  1  <_  ( A ^ 2 ) ) ) )
6461, 62, 63sylancl 413 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  <_ 
1  /\  1  <_  ( A ^ 2 ) ) ) )
6560, 64sylibrd 169 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( A ^
2 )  =  1 ) )
6643, 65syld 45 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( ( A  x.  B ) ^ 2 )  =  1  ->  ( A ^ 2 )  =  1 ) )
6766con3dimp 635 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  -.  ( ( A  x.  B ) ^ 2 )  =  1 )
6867iffalsed 3545 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  if ( ( ( A  x.  B ) ^
2 )  =  1 ,  1 ,  0 )  =  0 )
6931, 34, 683eqtr4d 2220 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
70 zdceq 9328 . . . . . 6  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A ^ 2 )  =  1 )
7155, 5, 70sylancl 413 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  -> DECID 
( A ^ 2 )  =  1 )
72 exmiddc 836 . . . . 5  |-  (DECID  ( A ^ 2 )  =  1  ->  ( ( A ^ 2 )  =  1  \/  -.  ( A ^ 2 )  =  1 ) )
7371, 72syl 14 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  =  1  \/  -.  ( A ^ 2 )  =  1 ) )
7429, 69, 73mpjaodan 798 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B
) ^ 2 )  =  1 ,  1 ,  0 ) )
75 oveq2 5883 . . . . 5  |-  ( N  =  0  ->  ( A  /L N )  =  ( A  /L 0 ) )
76 lgs0 14417 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
7714, 76syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  /L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
7875, 77sylan9eqr 2232 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A  /L N )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
79 oveq2 5883 . . . . 5  |-  ( N  =  0  ->  ( B  /L N )  =  ( B  /L 0 ) )
80 lgs0 14417 . . . . . 6  |-  ( B  e.  ZZ  ->  ( B  /L 0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8117, 80syl 14 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( B  /L 0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8279, 81sylan9eqr 2232 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( B  /L N )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
8378, 82oveq12d 5893 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  /L N )  x.  ( B  /L N ) )  =  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
84 oveq2 5883 . . . 4  |-  ( N  =  0  ->  (
( A  x.  B
)  /L N )  =  ( ( A  x.  B )  /L 0 ) )
85 lgs0 14417 . . . . 5  |-  ( ( A  x.  B )  e.  ZZ  ->  (
( A  x.  B
)  /L 0 )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8637, 85syl 14 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L 0 )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8784, 86sylan9eqr 2232 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  x.  B )  /L N )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
8874, 83, 873eqtr4rd 2221 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  x.  B )  /L N )  =  ( ( A  /L N )  x.  ( B  /L
N ) ) )
89 lgsdilem 14431 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
9089adantr 276 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
91 simpl3 1002 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  N  e.  ZZ )
92 nnabscl 11109 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
9391, 92sylan 283 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
94 nnuz 9563 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
9593, 94eleqtrdi 2270 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  ( ZZ>= ` 
1 ) )
96 simpll1 1036 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  A  e.  ZZ )
97 simpll3 1038 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  N  e.  ZZ )
98 simpr 110 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  N  =/=  0 )
99 eqid 2177 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
10099lgsfcl3 14425 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
10196, 97, 98, 100syl3anc 1238 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
102 elnnuz 9564 . . . . . . . 8  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
103102biimpri 133 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  1
)  ->  k  e.  NN )
104 ffvelcdm 5650 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
105101, 103, 104syl2an 289 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
106105zcnd 9376 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
107 simpll2 1037 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  B  e.  ZZ )
108 eqid 2177 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
109108lgsfcl3 14425 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
110107, 97, 98, 109syl3anc 1238 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
111 ffvelcdm 5650 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
112110, 103, 111syl2an 289 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
113112zcnd 9376 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
11496adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  A  e.  ZZ )
115107adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  B  e.  ZZ )
116 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
k  e.  Prime )
117 lgsdirprm 14438 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  k  e.  Prime )  ->  (
( A  x.  B
)  /L k )  =  ( ( A  /L k )  x.  ( B  /L k ) ) )
118114, 115, 116, 117syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( A  x.  B )  /L
k )  =  ( ( A  /L
k )  x.  ( B  /L k ) ) )
119118oveq1d 5890 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  =  ( ( ( A  /L k )  x.  ( B  /L
k ) ) ^
( k  pCnt  N
) ) )
120 prmz 12111 . . . . . . . . . . . . 13  |-  ( k  e.  Prime  ->  k  e.  ZZ )
121 lgscl 14418 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  /L
k )  e.  ZZ )
12296, 120, 121syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
123122zcnd 9376 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  CC )
124 lgscl 14418 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  k  e.  ZZ )  ->  ( B  /L
k )  e.  ZZ )
125107, 120, 124syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  ZZ )
126125zcnd 9376 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  CC )
12797adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  N  e.  ZZ )
12898adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  N  =/=  0 )
129 pczcl 12298 . . . . . . . . . . . 12  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
130116, 127, 128, 129syl12anc 1236 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
131123, 126, 130mulexpd 10669 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  /L k )  x.  ( B  /L k ) ) ^ ( k  pCnt  N ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
132119, 131eqtrd 2210 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
133 iftrue 3540 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( ( A  x.  B )  /L k ) ^ ( k  pCnt  N ) ) )
134133adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) )
135 iftrue 3540 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( A  /L k ) ^ ( k  pCnt  N ) ) )
136 iftrue 3540 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( B  /L k ) ^ ( k  pCnt  N ) ) )
137135, 136oveq12d 5893 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( ( ( A  /L
k ) ^ (
k  pCnt  N )
)  x.  ( ( B  /L k ) ^ ( k 
pCnt  N ) ) ) )
138137adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  ( ( ( A  /L k ) ^
( k  pCnt  N
) )  x.  (
( B  /L
k ) ^ (
k  pCnt  N )
) ) )
139132, 134, 1383eqtr4d 2220 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
140139adantlr 477 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
141 1t1e1 9071 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
142141eqcomi 2181 . . . . . . . . 9  |-  1  =  ( 1  x.  1 )
143 iffalse 3543 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
144 iffalse 3543 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
145 iffalse 3543 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
146144, 145oveq12d 5893 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( 1  x.  1 ) )
147142, 143, 1463eqtr4a 2236 . . . . . . . 8  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
148147adantl 277 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) ,  1 )  =  ( if ( k  e. 
Prime ,  ( ( A  /L k ) ^ ( k  pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
149103adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
k  e.  NN )
150 prmdc 12130 . . . . . . . . 9  |-  ( k  e.  NN  -> DECID  k  e.  Prime )
151149, 150syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> DECID  k  e.  Prime )
152 exmiddc 836 . . . . . . . 8  |-  (DECID  k  e. 
Prime  ->  ( k  e. 
Prime  \/  -.  k  e. 
Prime ) )
153151, 152syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( k  e.  Prime  \/ 
-.  k  e.  Prime ) )
154140, 148, 153mpjaodan 798 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
155 eqid 2177 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
156 eleq1w 2238 . . . . . . . 8  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
157 oveq2 5883 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  x.  B
)  /L n )  =  ( ( A  x.  B )  /L k ) )
158 oveq1 5882 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
159157, 158oveq12d 5893 . . . . . . . 8  |-  ( n  =  k  ->  (
( ( A  x.  B )  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( ( A  x.  B
)  /L k ) ^ ( k 
pCnt  N ) ) )
160156, 159ifbieq1d 3557 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
16137ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  x.  B
)  e.  ZZ )
162120adantl 277 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
k  e.  ZZ )
163 lgscl 14418 . . . . . . . . . 10  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( A  x.  B )  /L
k )  e.  ZZ )
164161, 162, 163syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  x.  B )  /L
k )  e.  ZZ )
165130adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
166 zexpcl 10535 . . . . . . . . 9  |-  ( ( ( ( A  x.  B )  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
167164, 165, 166syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
168 1zzd 9280 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  -.  k  e.  Prime )  ->  1  e.  ZZ )
169167, 168, 151ifcldadc 3564 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
170155, 160, 149, 169fvmptd3 5610 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
171 oveq2 5883 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A  /L n )  =  ( A  /L k ) )
172171, 158oveq12d 5893 . . . . . . . . 9  |-  ( n  =  k  ->  (
( A  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  /L k ) ^ ( k 
pCnt  N ) ) )
173156, 172ifbieq1d 3557 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
174122adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( A  /L
k )  e.  ZZ )
175 zexpcl 10535 . . . . . . . . . 10  |-  ( ( ( A  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
176174, 165, 175syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( A  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
177176, 168, 151ifcldadc 3564 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
17899, 173, 149, 177fvmptd3 5610 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
179 oveq2 5883 . . . . . . . . . 10  |-  ( n  =  k  ->  ( B  /L n )  =  ( B  /L k ) )
180179, 158oveq12d 5893 . . . . . . . . 9  |-  ( n  =  k  ->  (
( B  /L
n ) ^ (
n  pCnt  N )
)  =  ( ( B  /L k ) ^ ( k 
pCnt  N ) ) )
181156, 180ifbieq1d 3557 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
182125adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( B  /L
k )  e.  ZZ )
183 zexpcl 10535 . . . . . . . . . 10  |-  ( ( ( B  /L
k )  e.  ZZ  /\  ( k  pCnt  N
)  e.  NN0 )  ->  ( ( B  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
184182, 165, 183syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  /\  k  e.  Prime )  -> 
( ( B  /L k ) ^
( k  pCnt  N
) )  e.  ZZ )
185184, 168, 151ifcldadc 3564 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  ->  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 )  e.  ZZ )
186108, 181, 149, 185fvmptd3 5610 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( B  /L k ) ^
( k  pCnt  N
) ) ,  1 ) )
187178, 186oveq12d 5893 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) )  =  ( if ( k  e.  Prime ,  ( ( A  /L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  /L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
188154, 170, 1873eqtr4d 2220 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  x.  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
) ) )
18995, 106, 113, 188prod3fmul 11549 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  =  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19090, 189oveq12d 5893 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( if ( ( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 ) )  x.  ( (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
19137adantr 276 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( A  x.  B
)  e.  ZZ )
192155lgsval4 14424 . . . 4  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  x.  B
)  /L N )  =  ( if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
193191, 97, 98, 192syl3anc 1238 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  x.  B )  /L
N )  =  ( if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19499lgsval4 14424 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  /L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
19596, 97, 98, 194syl3anc 1238 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( A  /L
N )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
196108lgsval4 14424 . . . . . 6  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( B  /L N )  =  ( if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
197107, 97, 98, 196syl3anc 1238 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( B  /L
N )  =  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
198195, 197oveq12d 5893 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  /L N )  x.  ( B  /L
N ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) )  x.  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
199 neg1cn 9024 . . . . . . 7  |-  -u 1  e.  CC
200199a1i 9 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  -u 1  e.  CC )
201 1cnd 7973 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
1  e.  CC )
202 0z 9264 . . . . . . . 8  |-  0  e.  ZZ
203 zdclt 9330 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  <  0 )
20497, 202, 203sylancl 413 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  N  <  0 )
205 zdclt 9330 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  0  e.  ZZ )  -> DECID  A  <  0 )
20696, 202, 205sylancl 413 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  A  <  0 )
207 dcan2 934 . . . . . . 7  |-  (DECID  N  <  0  ->  (DECID  A  <  0  -> DECID 
( N  <  0  /\  A  <  0
) ) )
208204, 206, 207sylc 62 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  ( N  <  0  /\  A  <  0 ) )
209200, 201, 208ifcldcd 3571 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
210 1zzd 9280 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
1  e.  ZZ )
211101ffvelcdmda 5652 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
212 zmulcl 9306 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  v  e.  ZZ )  ->  ( k  x.  v
)  e.  ZZ )
213212adantl 277 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  ( k  e.  ZZ  /\  v  e.  ZZ ) )  ->  ( k  x.  v )  e.  ZZ )
21494, 210, 211, 213seqf 10461 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
215214, 93ffvelcdmd 5653 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  ZZ )
216215zcnd 9376 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  CC )
217 neg1z 9285 . . . . . . . 8  |-  -u 1  e.  ZZ
218217a1i 9 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  -u 1  e.  ZZ )
219 zdclt 9330 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  <  0 )
220107, 202, 219sylancl 413 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  B  <  0 )
221 dcan2 934 . . . . . . . 8  |-  (DECID  N  <  0  ->  (DECID  B  <  0  -> DECID 
( N  <  0  /\  B  <  0
) ) )
222204, 220, 221sylc 62 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> DECID  ( N  <  0  /\  B  <  0 ) )
223218, 210, 222ifcldcd 3571 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  e.  ZZ )
224223zcnd 9376 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  e.  CC )
225110ffvelcdmda 5652 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
22694, 210, 225, 213seqf 10461 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) : NN --> ZZ )
227226, 93ffvelcdmd 5653 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  ZZ )
228227zcnd 9376 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  e.  CC )
229209, 216, 224, 228mul4d 8112 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) )  x.  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
230198, 229eqtrd 2210 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  /L N )  x.  ( B  /L
N ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  /L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  x.  (  seq 1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  /L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
231190, 193, 2303eqtr4d 2220 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  x.  B )  /L
N )  =  ( ( A  /L
N )  x.  ( B  /L N ) ) )
232 zdceq 9328 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
23391, 202, 232sylancl 413 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  -> DECID  N  =  0
)
234 dcne 2358 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
235233, 234sylib 122 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( N  =  0  \/  N  =/=  0 ) )
23688, 231, 235mpjaodan 798 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  /L N )  =  ( ( A  /L N )  x.  ( B  /L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   ifcif 3535   class class class wbr 4004    |-> cmpt 4065   -->wf 5213   ` cfv 5217  (class class class)co 5875   CCcc 7809   RRcr 7810   0cc0 7811   1c1 7812    x. cmul 7816    < clt 7992    <_ cle 7993   -ucneg 8129   NNcn 8919   2c2 8970   NN0cn0 9176   ZZcz 9253   ZZ>=cuz 9528    seqcseq 10445   ^cexp 10519   abscabs 11006    || cdvds 11794   Primecprime 12107    pCnt cpc 12284    /Lclgs 14401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-2o 6418  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-9 8985  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-proddc 11559  df-dvds 11795  df-gcd 11944  df-prm 12108  df-phi 12211  df-pc 12285  df-lgs 14402
This theorem is referenced by:  lgssq  14444  lgsmulsqcoprm  14450  lgsdirnn0  14451
  Copyright terms: Public domain W3C validator