ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdxmet Unicode version

Theorem bdxmet 14680
Description: The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdxmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem bdxmet
Dummy variables  a  b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  e.  ( *Met `  X
) )
2 xmetcl 14531 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
3 xmetge0 14544 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
4 elxrge0 10047 . . . . . . 7  |-  ( ( x C y )  e.  ( 0 [,] +oo )  <->  ( ( x C y )  e. 
RR*  /\  0  <_  ( x C y ) ) )
52, 3, 4sylanbrc 417 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e.  ( 0 [,] +oo ) )
653expb 1206 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  ( 0 [,] +oo ) )
71, 6sylan 283 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  ( 0 [,] +oo ) )
8 xmetf 14529 . . . . . . 7  |-  ( C  e.  ( *Met `  X )  ->  C : ( X  X.  X ) --> RR* )
983ad2ant1 1020 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C : ( X  X.  X ) -->
RR* )
109ffnd 5405 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  Fn  ( X  X.  X ) )
11 fnovim 6028 . . . . 5  |-  ( C  Fn  ( X  X.  X )  ->  C  =  ( x  e.  X ,  y  e.  X  |->  ( x C y ) ) )
1210, 11syl 14 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  =  ( x  e.  X , 
y  e.  X  |->  ( x C y ) ) )
13 eqidd 2194 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) )  =  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) )
14 preq1 3696 . . . . 5  |-  ( z  =  ( x C y )  ->  { z ,  R }  =  { ( x C y ) ,  R } )
1514infeq1d 7073 . . . 4  |-  ( z  =  ( x C y )  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
167, 12, 13, 15fmpoco 6271 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) ) )
17 stdbdmet.1 . . 3  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
1816, 17eqtr4di 2244 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  =  D )
19 elxrge0 10047 . . . . . 6  |-  ( z  e.  ( 0 [,] +oo )  <->  ( z  e. 
RR*  /\  0  <_  z ) )
2019simplbi 274 . . . . 5  |-  ( z  e.  ( 0 [,] +oo )  ->  z  e. 
RR* )
21 simp2 1000 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  R  e.  RR* )
22 xrmincl 11412 . . . . 5  |-  ( ( z  e.  RR*  /\  R  e.  RR* )  -> inf ( { z ,  R } ,  RR* ,  <  )  e.  RR* )
2320, 21, 22syl2anr 290 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  z  e.  ( 0 [,] +oo ) )  -> inf ( { z ,  R } ,  RR* ,  <  )  e.  RR* )
2423fmpttd 5714 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) : ( 0 [,] +oo ) --> RR* )
25 eqid 2193 . . . . . 6  |-  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  =  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)
26 preq1 3696 . . . . . . 7  |-  ( z  =  a  ->  { z ,  R }  =  { a ,  R } )
2726infeq1d 7073 . . . . . 6  |-  ( z  =  a  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { a ,  R } ,  RR* ,  <  ) )
28 simpr 110 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  a  e.  ( 0 [,] +oo ) )
29 elxrge0 10047 . . . . . . . 8  |-  ( a  e.  ( 0 [,] +oo )  <->  ( a  e. 
RR*  /\  0  <_  a ) )
3029simplbi 274 . . . . . . 7  |-  ( a  e.  ( 0 [,] +oo )  ->  a  e. 
RR* )
31 xrmincl 11412 . . . . . . 7  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
3230, 21, 31syl2anr 290 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
3325, 27, 28, 32fvmptd3 5652 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  = inf ( { a ,  R } ,  RR* ,  <  ) )
3433eqeq1d 2202 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  =  0  <-> inf ( { a ,  R } ,  RR* ,  <  )  =  0 ) )
35 0xr 8068 . . . . . . . . 9  |-  0  e.  RR*
3635a1i 9 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  e.  RR* )
3730adantl 277 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  a  e.  RR* )
3821adantr 276 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  R  e.  RR* )
39 xrltmininf 11416 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  a  e.  RR*  /\  R  e. 
RR* )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <  a  /\  0  <  R ) ) )
4036, 37, 38, 39syl3anc 1249 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <  a  /\  0  <  R ) ) )
41 simp3 1001 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  0  <  R
)
4241adantr 276 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <  R )
4342biantrud 304 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <  a  <->  ( 0  <  a  /\  0  <  R ) ) )
4440, 43bitr4d 191 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  0  <  a ) )
4544notbid 668 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <->  -.  0  <  a ) )
4628, 29sylib 122 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
a  e.  RR*  /\  0  <_  a ) )
4746simprd 114 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_  a )
48 xrltle 9867 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR*  /\  R  e.  RR* )  ->  (
0  <  R  ->  0  <_  R ) )
4935, 21, 48sylancr 414 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( 0  < 
R  ->  0  <_  R ) )
5041, 49mpd 13 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  0  <_  R
)
5150adantr 276 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_  R )
52 xrlemininf 11417 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  a  e.  RR*  /\  R  e. 
RR* )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <_  a  /\  0  <_  R ) ) )
5336, 37, 38, 52syl3anc 1249 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <_  a  /\  0  <_  R ) ) )
5447, 51, 53mpbir2and 946 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_ inf ( { a ,  R } ,  RR* ,  <  ) )
55 xrlenlt 8086 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\ inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0
) )
5635, 32, 55sylancr 414 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0
) )
5754, 56mpbid 147 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0 )
5857biantrurd 305 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
59 xrlttri3 9866 . . . . . . 7  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  0  e.  RR* )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
6032, 36, 59syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
6158, 60bitr4d 191 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <-> inf ( { a ,  R } ,  RR* ,  <  )  =  0 ) )
62 xrlenlt 8086 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  a  e.  RR* )  ->  (
0  <_  a  <->  -.  a  <  0 ) )
6335, 37, 62sylancr 414 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_  a  <->  -.  a  <  0 ) )
6447, 63mpbid 147 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  -.  a  <  0 )
6564biantrurd 305 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  <  a  <->  ( -.  a  <  0  /\  -.  0  <  a ) ) )
66 xrlttri3 9866 . . . . . . 7  |-  ( ( a  e.  RR*  /\  0  e.  RR* )  ->  (
a  =  0  <->  ( -.  a  <  0  /\  -.  0  <  a
) ) )
6737, 36, 66syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
a  =  0  <->  ( -.  a  <  0  /\  -.  0  <  a
) ) )
6865, 67bitr4d 191 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  <  a  <->  a  = 
0 ) )
6945, 61, 683bitr3d 218 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  a  = 
0 ) )
7034, 69bitrd 188 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  =  0  <->  a  =  0 ) )
7130ad2antrl 490 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  a  e.  RR* )
7221adantr 276 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  R  e.  RR* )
73 xrmin1inf 11413 . . . . . . . 8  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  a )
7471, 72, 73syl2anc 411 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  a )
7571, 72, 31syl2anc 411 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
76 elxrge0 10047 . . . . . . . . . 10  |-  ( b  e.  ( 0 [,] +oo )  <->  ( b  e. 
RR*  /\  0  <_  b ) )
7776simplbi 274 . . . . . . . . 9  |-  ( b  e.  ( 0 [,] +oo )  ->  b  e. 
RR* )
7877ad2antll 491 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  b  e.  RR* )
79 xrletr 9877 . . . . . . . 8  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  a  e.  RR*  /\  b  e.  RR* )  ->  (
(inf ( { a ,  R } ,  RR* ,  <  )  <_ 
a  /\  a  <_  b )  -> inf ( {
a ,  R } ,  RR* ,  <  )  <_  b ) )
8075, 71, 78, 79syl3anc 1249 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
(inf ( { a ,  R } ,  RR* ,  <  )  <_ 
a  /\  a  <_  b )  -> inf ( {
a ,  R } ,  RR* ,  <  )  <_  b ) )
8174, 80mpand 429 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  b ) )
82 xrmin2inf 11414 . . . . . . 7  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  R )
8371, 72, 82syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  R )
8481, 83jctird 317 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R
) ) )
85 xrlemininf 11417 . . . . . 6  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  b  e.  RR*  /\  R  e.  RR* )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  )  <->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R ) ) )
8675, 78, 72, 85syl3anc 1249 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  )  <->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R ) ) )
8784, 86sylibrd 169 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  -> inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  ) ) )
8833adantrr 479 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  = inf ( { a ,  R } ,  RR* ,  <  ) )
89 preq1 3696 . . . . . . 7  |-  ( z  =  b  ->  { z ,  R }  =  { b ,  R } )
9089infeq1d 7073 . . . . . 6  |-  ( z  =  b  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { b ,  R } ,  RR* ,  <  ) )
91 simpr 110 . . . . . . 7  |-  ( ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo ) )  ->  b  e.  ( 0 [,] +oo )
)
9291adantl 277 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  b  e.  ( 0 [,] +oo ) )
93 xrmincl 11412 . . . . . . 7  |-  ( ( b  e.  RR*  /\  R  e.  RR* )  -> inf ( { b ,  R } ,  RR* ,  <  )  e.  RR* )
9478, 72, 93syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { b ,  R } ,  RR* ,  <  )  e.  RR* )
9525, 90, 92, 94fvmptd3 5652 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b )  = inf ( { b ,  R } ,  RR* ,  <  ) )
9688, 95breq12d 4043 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  <_ 
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 b )  <-> inf ( {
a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  ) ) )
9787, 96sylibrd 169 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  <_  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b ) ) )
9829simprbi 275 . . . . . 6  |-  ( a  e.  ( 0 [,] +oo )  ->  0  <_ 
a )
9998ad2antrl 490 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <_  a )
10076simprbi 275 . . . . . 6  |-  ( b  e.  ( 0 [,] +oo )  ->  0  <_ 
b )
101100ad2antll 491 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <_  b )
10241adantr 276 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <  R )
103 xrbdtri 11422 . . . . 5  |-  ( ( ( a  e.  RR*  /\  0  <_  a )  /\  ( b  e.  RR*  /\  0  <_  b )  /\  ( R  e.  RR*  /\  0  <  R ) )  -> inf ( {
( a +e
b ) ,  R } ,  RR* ,  <  )  <_  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  ) ) )
10471, 99, 78, 101, 72, 102, 103syl222anc 1265 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { ( a +e
b ) ,  R } ,  RR* ,  <  )  <_  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  ) ) )
105 preq1 3696 . . . . . 6  |-  ( z  =  ( a +e b )  ->  { z ,  R }  =  { (
a +e b ) ,  R }
)
106105infeq1d 7073 . . . . 5  |-  ( z  =  ( a +e b )  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { ( a +e b ) ,  R } ,  RR* ,  <  )
)
107 ge0xaddcl 10052 . . . . . 6  |-  ( ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo ) )  ->  ( a +e b )  e.  ( 0 [,] +oo ) )
108107adantl 277 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a +e b )  e.  ( 0 [,] +oo ) )
10971, 78xaddcld 9953 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a +e b )  e.  RR* )
110 xrmincl 11412 . . . . . 6  |-  ( ( ( a +e
b )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( a +e b ) ,  R } ,  RR* ,  <  )  e. 
RR* )
111109, 72, 110syl2anc 411 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { ( a +e
b ) ,  R } ,  RR* ,  <  )  e.  RR* )
11225, 106, 108, 111fvmptd3 5652 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  ( a +e
b ) )  = inf ( { ( a +e b ) ,  R } ,  RR* ,  <  ) )
11388, 95oveq12d 5937 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a ) +e ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
) `  b )
)  =  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  )
) )
114104, 112, 1133brtr4d 4062 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  ( a +e
b ) )  <_ 
( ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
) `  a ) +e ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b ) ) )
1151, 24, 70, 97, 114comet 14678 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  e.  ( *Met `  X ) )
11618, 115eqeltrrd 2271 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {cpr 3620   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658    o. ccom 4664    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919    e. cmpo 5921  infcinf 7044   0cc0 7874   +oocpnf 8053   RR*cxr 8055    < clt 8056    <_ cle 8057   +ecxad 9839   [,]cicc 9960   *Metcxmet 14035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-map 6706  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-xneg 9841  df-xadd 9842  df-icc 9964  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-xmet 14043
This theorem is referenced by:  bdmet  14681  bdbl  14682  bdmopn  14683
  Copyright terms: Public domain W3C validator