ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdxmet Unicode version

Theorem bdxmet 12429
Description: The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdxmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem bdxmet
Dummy variables  a  b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 949 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  e.  ( *Met `  X
) )
2 xmetcl 12280 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
3 xmetge0 12293 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
4 elxrge0 9602 . . . . . . 7  |-  ( ( x C y )  e.  ( 0 [,] +oo )  <->  ( ( x C y )  e. 
RR*  /\  0  <_  ( x C y ) ) )
52, 3, 4sylanbrc 411 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e.  ( 0 [,] +oo ) )
653expb 1150 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  ( 0 [,] +oo ) )
71, 6sylan 279 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  ( 0 [,] +oo ) )
8 xmetf 12278 . . . . . . 7  |-  ( C  e.  ( *Met `  X )  ->  C : ( X  X.  X ) --> RR* )
983ad2ant1 970 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C : ( X  X.  X ) -->
RR* )
109ffnd 5209 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  Fn  ( X  X.  X ) )
11 fnovim 5811 . . . . 5  |-  ( C  Fn  ( X  X.  X )  ->  C  =  ( x  e.  X ,  y  e.  X  |->  ( x C y ) ) )
1210, 11syl 14 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  =  ( x  e.  X , 
y  e.  X  |->  ( x C y ) ) )
13 eqidd 2101 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) )  =  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) )
14 preq1 3547 . . . . 5  |-  ( z  =  ( x C y )  ->  { z ,  R }  =  { ( x C y ) ,  R } )
1514infeq1d 6814 . . . 4  |-  ( z  =  ( x C y )  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
167, 12, 13, 15fmpoco 6043 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) ) )
17 stdbdmet.1 . . 3  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
1816, 17syl6eqr 2150 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  =  D )
19 elxrge0 9602 . . . . . 6  |-  ( z  e.  ( 0 [,] +oo )  <->  ( z  e. 
RR*  /\  0  <_  z ) )
2019simplbi 270 . . . . 5  |-  ( z  e.  ( 0 [,] +oo )  ->  z  e. 
RR* )
21 simp2 950 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  R  e.  RR* )
22 xrmincl 10874 . . . . 5  |-  ( ( z  e.  RR*  /\  R  e.  RR* )  -> inf ( { z ,  R } ,  RR* ,  <  )  e.  RR* )
2320, 21, 22syl2anr 286 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  z  e.  ( 0 [,] +oo ) )  -> inf ( { z ,  R } ,  RR* ,  <  )  e.  RR* )
2423fmpttd 5507 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) : ( 0 [,] +oo ) --> RR* )
25 eqid 2100 . . . . . 6  |-  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  =  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)
26 preq1 3547 . . . . . . 7  |-  ( z  =  a  ->  { z ,  R }  =  { a ,  R } )
2726infeq1d 6814 . . . . . 6  |-  ( z  =  a  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { a ,  R } ,  RR* ,  <  ) )
28 simpr 109 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  a  e.  ( 0 [,] +oo ) )
29 elxrge0 9602 . . . . . . . 8  |-  ( a  e.  ( 0 [,] +oo )  <->  ( a  e. 
RR*  /\  0  <_  a ) )
3029simplbi 270 . . . . . . 7  |-  ( a  e.  ( 0 [,] +oo )  ->  a  e. 
RR* )
31 xrmincl 10874 . . . . . . 7  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
3230, 21, 31syl2anr 286 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
3325, 27, 28, 32fvmptd3 5446 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  = inf ( { a ,  R } ,  RR* ,  <  ) )
3433eqeq1d 2108 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  =  0  <-> inf ( { a ,  R } ,  RR* ,  <  )  =  0 ) )
35 0xr 7684 . . . . . . . . 9  |-  0  e.  RR*
3635a1i 9 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  e.  RR* )
3730adantl 273 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  a  e.  RR* )
3821adantr 272 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  R  e.  RR* )
39 xrltmininf 10878 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  a  e.  RR*  /\  R  e. 
RR* )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <  a  /\  0  <  R ) ) )
4036, 37, 38, 39syl3anc 1184 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <  a  /\  0  <  R ) ) )
41 simp3 951 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  0  <  R
)
4241adantr 272 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <  R )
4342biantrud 300 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <  a  <->  ( 0  <  a  /\  0  <  R ) ) )
4440, 43bitr4d 190 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  0  <  a ) )
4544notbid 633 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <->  -.  0  <  a ) )
4628, 29sylib 121 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
a  e.  RR*  /\  0  <_  a ) )
4746simprd 113 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_  a )
48 xrltle 9425 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR*  /\  R  e.  RR* )  ->  (
0  <  R  ->  0  <_  R ) )
4935, 21, 48sylancr 408 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( 0  < 
R  ->  0  <_  R ) )
5041, 49mpd 13 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  0  <_  R
)
5150adantr 272 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_  R )
52 xrlemininf 10879 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  a  e.  RR*  /\  R  e. 
RR* )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <_  a  /\  0  <_  R ) ) )
5336, 37, 38, 52syl3anc 1184 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <_  a  /\  0  <_  R ) ) )
5447, 51, 53mpbir2and 896 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_ inf ( { a ,  R } ,  RR* ,  <  ) )
55 xrlenlt 7701 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\ inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0
) )
5635, 32, 55sylancr 408 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0
) )
5754, 56mpbid 146 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0 )
5857biantrurd 301 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
59 xrlttri3 9424 . . . . . . 7  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  0  e.  RR* )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
6032, 36, 59syl2anc 406 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
6158, 60bitr4d 190 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <-> inf ( { a ,  R } ,  RR* ,  <  )  =  0 ) )
62 xrlenlt 7701 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  a  e.  RR* )  ->  (
0  <_  a  <->  -.  a  <  0 ) )
6335, 37, 62sylancr 408 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_  a  <->  -.  a  <  0 ) )
6447, 63mpbid 146 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  -.  a  <  0 )
6564biantrurd 301 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  <  a  <->  ( -.  a  <  0  /\  -.  0  <  a ) ) )
66 xrlttri3 9424 . . . . . . 7  |-  ( ( a  e.  RR*  /\  0  e.  RR* )  ->  (
a  =  0  <->  ( -.  a  <  0  /\  -.  0  <  a
) ) )
6737, 36, 66syl2anc 406 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
a  =  0  <->  ( -.  a  <  0  /\  -.  0  <  a
) ) )
6865, 67bitr4d 190 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  <  a  <->  a  = 
0 ) )
6945, 61, 683bitr3d 217 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  a  = 
0 ) )
7034, 69bitrd 187 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  =  0  <->  a  =  0 ) )
7130ad2antrl 477 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  a  e.  RR* )
7221adantr 272 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  R  e.  RR* )
73 xrmin1inf 10875 . . . . . . . 8  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  a )
7471, 72, 73syl2anc 406 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  a )
7571, 72, 31syl2anc 406 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
76 elxrge0 9602 . . . . . . . . . 10  |-  ( b  e.  ( 0 [,] +oo )  <->  ( b  e. 
RR*  /\  0  <_  b ) )
7776simplbi 270 . . . . . . . . 9  |-  ( b  e.  ( 0 [,] +oo )  ->  b  e. 
RR* )
7877ad2antll 478 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  b  e.  RR* )
79 xrletr 9432 . . . . . . . 8  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  a  e.  RR*  /\  b  e.  RR* )  ->  (
(inf ( { a ,  R } ,  RR* ,  <  )  <_ 
a  /\  a  <_  b )  -> inf ( {
a ,  R } ,  RR* ,  <  )  <_  b ) )
8075, 71, 78, 79syl3anc 1184 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
(inf ( { a ,  R } ,  RR* ,  <  )  <_ 
a  /\  a  <_  b )  -> inf ( {
a ,  R } ,  RR* ,  <  )  <_  b ) )
8174, 80mpand 423 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  b ) )
82 xrmin2inf 10876 . . . . . . 7  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  R )
8371, 72, 82syl2anc 406 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  R )
8481, 83jctird 313 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R
) ) )
85 xrlemininf 10879 . . . . . 6  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  b  e.  RR*  /\  R  e.  RR* )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  )  <->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R ) ) )
8675, 78, 72, 85syl3anc 1184 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  )  <->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R ) ) )
8784, 86sylibrd 168 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  -> inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  ) ) )
8833adantrr 466 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  = inf ( { a ,  R } ,  RR* ,  <  ) )
89 preq1 3547 . . . . . . 7  |-  ( z  =  b  ->  { z ,  R }  =  { b ,  R } )
9089infeq1d 6814 . . . . . 6  |-  ( z  =  b  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { b ,  R } ,  RR* ,  <  ) )
91 simpr 109 . . . . . . 7  |-  ( ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo ) )  ->  b  e.  ( 0 [,] +oo )
)
9291adantl 273 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  b  e.  ( 0 [,] +oo ) )
93 xrmincl 10874 . . . . . . 7  |-  ( ( b  e.  RR*  /\  R  e.  RR* )  -> inf ( { b ,  R } ,  RR* ,  <  )  e.  RR* )
9478, 72, 93syl2anc 406 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { b ,  R } ,  RR* ,  <  )  e.  RR* )
9525, 90, 92, 94fvmptd3 5446 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b )  = inf ( { b ,  R } ,  RR* ,  <  ) )
9688, 95breq12d 3888 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  <_ 
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 b )  <-> inf ( {
a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  ) ) )
9787, 96sylibrd 168 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  <_  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b ) ) )
9829simprbi 271 . . . . . 6  |-  ( a  e.  ( 0 [,] +oo )  ->  0  <_ 
a )
9998ad2antrl 477 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <_  a )
10076simprbi 271 . . . . . 6  |-  ( b  e.  ( 0 [,] +oo )  ->  0  <_ 
b )
101100ad2antll 478 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <_  b )
10241adantr 272 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <  R )
103 xrbdtri 10884 . . . . 5  |-  ( ( ( a  e.  RR*  /\  0  <_  a )  /\  ( b  e.  RR*  /\  0  <_  b )  /\  ( R  e.  RR*  /\  0  <  R ) )  -> inf ( {
( a +e
b ) ,  R } ,  RR* ,  <  )  <_  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  ) ) )
10471, 99, 78, 101, 72, 102, 103syl222anc 1200 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { ( a +e
b ) ,  R } ,  RR* ,  <  )  <_  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  ) ) )
105 preq1 3547 . . . . . 6  |-  ( z  =  ( a +e b )  ->  { z ,  R }  =  { (
a +e b ) ,  R }
)
106105infeq1d 6814 . . . . 5  |-  ( z  =  ( a +e b )  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { ( a +e b ) ,  R } ,  RR* ,  <  )
)
107 ge0xaddcl 9607 . . . . . 6  |-  ( ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo ) )  ->  ( a +e b )  e.  ( 0 [,] +oo ) )
108107adantl 273 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a +e b )  e.  ( 0 [,] +oo ) )
10971, 78xaddcld 9508 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a +e b )  e.  RR* )
110 xrmincl 10874 . . . . . 6  |-  ( ( ( a +e
b )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( a +e b ) ,  R } ,  RR* ,  <  )  e. 
RR* )
111109, 72, 110syl2anc 406 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { ( a +e
b ) ,  R } ,  RR* ,  <  )  e.  RR* )
11225, 106, 108, 111fvmptd3 5446 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  ( a +e
b ) )  = inf ( { ( a +e b ) ,  R } ,  RR* ,  <  ) )
11388, 95oveq12d 5724 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a ) +e ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
) `  b )
)  =  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  )
) )
114104, 112, 1133brtr4d 3905 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  ( a +e
b ) )  <_ 
( ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
) `  a ) +e ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b ) ) )
1151, 24, 70, 97, 114comet 12427 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  e.  ( *Met `  X ) )
11618, 115eqeltrrd 2177 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 930    = wceq 1299    e. wcel 1448   {cpr 3475   class class class wbr 3875    |-> cmpt 3929    X. cxp 4475    o. ccom 4481    Fn wfn 5054   -->wf 5055   ` cfv 5059  (class class class)co 5706    e. cmpo 5708  infcinf 6785   0cc0 7500   +oocpnf 7669   RR*cxr 7671    < clt 7672    <_ cle 7673   +ecxad 9398   [,]cicc 9515   *Metcxmet 11931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-map 6474  df-sup 6786  df-inf 6787  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-xneg 9400  df-xadd 9401  df-icc 9519  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-xmet 11939
This theorem is referenced by:  bdmet  12430  bdbl  12431  bdmopn  12432
  Copyright terms: Public domain W3C validator