ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdxmet Unicode version

Theorem bdxmet 15006
Description: The standard bounded metric is an extended metric given an extended metric and a positive extended real cutoff. (Contributed by Mario Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
Hypothesis
Ref Expression
stdbdmet.1  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
Assertion
Ref Expression
bdxmet  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
Distinct variable groups:    x, y, C   
x, R, y    x, X, y
Allowed substitution hints:    D( x, y)

Proof of Theorem bdxmet
Dummy variables  a  b  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1000 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  e.  ( *Met `  X
) )
2 xmetcl 14857 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e. 
RR* )
3 xmetge0 14870 . . . . . . 7  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  0  <_  ( x C y ) )
4 elxrge0 10102 . . . . . . 7  |-  ( ( x C y )  e.  ( 0 [,] +oo )  <->  ( ( x C y )  e. 
RR*  /\  0  <_  ( x C y ) ) )
52, 3, 4sylanbrc 417 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  x  e.  X  /\  y  e.  X
)  ->  ( x C y )  e.  ( 0 [,] +oo ) )
653expb 1207 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  ( 0 [,] +oo ) )
71, 6sylan 283 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  e.  ( 0 [,] +oo ) )
8 xmetf 14855 . . . . . . 7  |-  ( C  e.  ( *Met `  X )  ->  C : ( X  X.  X ) --> RR* )
983ad2ant1 1021 . . . . . 6  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C : ( X  X.  X ) -->
RR* )
109ffnd 5428 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  Fn  ( X  X.  X ) )
11 fnovim 6056 . . . . 5  |-  ( C  Fn  ( X  X.  X )  ->  C  =  ( x  e.  X ,  y  e.  X  |->  ( x C y ) ) )
1210, 11syl 14 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  C  =  ( x  e.  X , 
y  e.  X  |->  ( x C y ) ) )
13 eqidd 2206 . . . 4  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) )  =  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) )
14 preq1 3710 . . . . 5  |-  ( z  =  ( x C y )  ->  { z ,  R }  =  { ( x C y ) ,  R } )
1514infeq1d 7116 . . . 4  |-  ( z  =  ( x C y )  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
167, 12, 13, 15fmpoco 6304 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) ) )
17 stdbdmet.1 . . 3  |-  D  =  ( x  e.  X ,  y  e.  X  |-> inf ( { ( x C y ) ,  R } ,  RR* ,  <  ) )
1816, 17eqtr4di 2256 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  =  D )
19 elxrge0 10102 . . . . . 6  |-  ( z  e.  ( 0 [,] +oo )  <->  ( z  e. 
RR*  /\  0  <_  z ) )
2019simplbi 274 . . . . 5  |-  ( z  e.  ( 0 [,] +oo )  ->  z  e. 
RR* )
21 simp2 1001 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  R  e.  RR* )
22 xrmincl 11610 . . . . 5  |-  ( ( z  e.  RR*  /\  R  e.  RR* )  -> inf ( { z ,  R } ,  RR* ,  <  )  e.  RR* )
2320, 21, 22syl2anr 290 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  z  e.  ( 0 [,] +oo ) )  -> inf ( { z ,  R } ,  RR* ,  <  )  e.  RR* )
2423fmpttd 5737 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) : ( 0 [,] +oo ) --> RR* )
25 eqid 2205 . . . . . 6  |-  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  =  ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)
26 preq1 3710 . . . . . . 7  |-  ( z  =  a  ->  { z ,  R }  =  { a ,  R } )
2726infeq1d 7116 . . . . . 6  |-  ( z  =  a  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { a ,  R } ,  RR* ,  <  ) )
28 simpr 110 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  a  e.  ( 0 [,] +oo ) )
29 elxrge0 10102 . . . . . . . 8  |-  ( a  e.  ( 0 [,] +oo )  <->  ( a  e. 
RR*  /\  0  <_  a ) )
3029simplbi 274 . . . . . . 7  |-  ( a  e.  ( 0 [,] +oo )  ->  a  e. 
RR* )
31 xrmincl 11610 . . . . . . 7  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
3230, 21, 31syl2anr 290 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
3325, 27, 28, 32fvmptd3 5675 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  = inf ( { a ,  R } ,  RR* ,  <  ) )
3433eqeq1d 2214 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  =  0  <-> inf ( { a ,  R } ,  RR* ,  <  )  =  0 ) )
35 0xr 8121 . . . . . . . . 9  |-  0  e.  RR*
3635a1i 9 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  e.  RR* )
3730adantl 277 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  a  e.  RR* )
3821adantr 276 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  R  e.  RR* )
39 xrltmininf 11614 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  a  e.  RR*  /\  R  e. 
RR* )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <  a  /\  0  <  R ) ) )
4036, 37, 38, 39syl3anc 1250 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <  a  /\  0  <  R ) ) )
41 simp3 1002 . . . . . . . . 9  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  0  <  R
)
4241adantr 276 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <  R )
4342biantrud 304 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <  a  <->  ( 0  <  a  /\  0  <  R ) ) )
4440, 43bitr4d 191 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  < inf ( {
a ,  R } ,  RR* ,  <  )  <->  0  <  a ) )
4544notbid 669 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <->  -.  0  <  a ) )
4628, 29sylib 122 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
a  e.  RR*  /\  0  <_  a ) )
4746simprd 114 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_  a )
48 xrltle 9922 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR*  /\  R  e.  RR* )  ->  (
0  <  R  ->  0  <_  R ) )
4935, 21, 48sylancr 414 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( 0  < 
R  ->  0  <_  R ) )
5041, 49mpd 13 . . . . . . . . . 10  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  0  <_  R
)
5150adantr 276 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_  R )
52 xrlemininf 11615 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  a  e.  RR*  /\  R  e. 
RR* )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <_  a  /\  0  <_  R ) ) )
5336, 37, 38, 52syl3anc 1250 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  ( 0  <_  a  /\  0  <_  R ) ) )
5447, 51, 53mpbir2and 947 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  0  <_ inf ( { a ,  R } ,  RR* ,  <  ) )
55 xrlenlt 8139 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\ inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0
) )
5635, 32, 55sylancr 414 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_ inf ( {
a ,  R } ,  RR* ,  <  )  <->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0
) )
5754, 56mpbid 147 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  -. inf ( { a ,  R } ,  RR* ,  <  )  <  0 )
5857biantrurd 305 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
59 xrlttri3 9921 . . . . . . 7  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  0  e.  RR* )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
6032, 36, 59syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  ( -. inf ( { a ,  R } ,  RR* ,  <  )  <  0  /\  -.  0  < inf ( { a ,  R } ,  RR* ,  <  ) ) ) )
6158, 60bitr4d 191 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  < inf ( { a ,  R } ,  RR* ,  <  )  <-> inf ( { a ,  R } ,  RR* ,  <  )  =  0 ) )
62 xrlenlt 8139 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  a  e.  RR* )  ->  (
0  <_  a  <->  -.  a  <  0 ) )
6335, 37, 62sylancr 414 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
0  <_  a  <->  -.  a  <  0 ) )
6447, 63mpbid 147 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  -.  a  <  0 )
6564biantrurd 305 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  <  a  <->  ( -.  a  <  0  /\  -.  0  <  a ) ) )
66 xrlttri3 9921 . . . . . . 7  |-  ( ( a  e.  RR*  /\  0  e.  RR* )  ->  (
a  =  0  <->  ( -.  a  <  0  /\  -.  0  <  a
) ) )
6737, 36, 66syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
a  =  0  <->  ( -.  a  <  0  /\  -.  0  <  a
) ) )
6865, 67bitr4d 191 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  ( -.  0  <  a  <->  a  = 
0 ) )
6945, 61, 683bitr3d 218 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  =  0  <->  a  = 
0 ) )
7034, 69bitrd 188 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  a  e.  ( 0 [,] +oo ) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  =  0  <->  a  =  0 ) )
7130ad2antrl 490 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  a  e.  RR* )
7221adantr 276 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  R  e.  RR* )
73 xrmin1inf 11611 . . . . . . . 8  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  a )
7471, 72, 73syl2anc 411 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  a )
7571, 72, 31syl2anc 411 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  e.  RR* )
76 elxrge0 10102 . . . . . . . . . 10  |-  ( b  e.  ( 0 [,] +oo )  <->  ( b  e. 
RR*  /\  0  <_  b ) )
7776simplbi 274 . . . . . . . . 9  |-  ( b  e.  ( 0 [,] +oo )  ->  b  e. 
RR* )
7877ad2antll 491 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  b  e.  RR* )
79 xrletr 9932 . . . . . . . 8  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  a  e.  RR*  /\  b  e.  RR* )  ->  (
(inf ( { a ,  R } ,  RR* ,  <  )  <_ 
a  /\  a  <_  b )  -> inf ( {
a ,  R } ,  RR* ,  <  )  <_  b ) )
8075, 71, 78, 79syl3anc 1250 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
(inf ( { a ,  R } ,  RR* ,  <  )  <_ 
a  /\  a  <_  b )  -> inf ( {
a ,  R } ,  RR* ,  <  )  <_  b ) )
8174, 80mpand 429 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  b ) )
82 xrmin2inf 11612 . . . . . . 7  |-  ( ( a  e.  RR*  /\  R  e.  RR* )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  R )
8371, 72, 82syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { a ,  R } ,  RR* ,  <  )  <_  R )
8481, 83jctird 317 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R
) ) )
85 xrlemininf 11615 . . . . . 6  |-  ( (inf ( { a ,  R } ,  RR* ,  <  )  e.  RR*  /\  b  e.  RR*  /\  R  e.  RR* )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  )  <->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R ) ) )
8675, 78, 72, 85syl3anc 1250 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  )  <->  (inf ( { a ,  R } ,  RR* ,  <  )  <_  b  /\ inf ( { a ,  R } ,  RR* ,  <  )  <_  R ) ) )
8784, 86sylibrd 169 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  -> inf ( { a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  ) ) )
8833adantrr 479 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  = inf ( { a ,  R } ,  RR* ,  <  ) )
89 preq1 3710 . . . . . . 7  |-  ( z  =  b  ->  { z ,  R }  =  { b ,  R } )
9089infeq1d 7116 . . . . . 6  |-  ( z  =  b  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { b ,  R } ,  RR* ,  <  ) )
91 simpr 110 . . . . . . 7  |-  ( ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo ) )  ->  b  e.  ( 0 [,] +oo )
)
9291adantl 277 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  b  e.  ( 0 [,] +oo ) )
93 xrmincl 11610 . . . . . . 7  |-  ( ( b  e.  RR*  /\  R  e.  RR* )  -> inf ( { b ,  R } ,  RR* ,  <  )  e.  RR* )
9478, 72, 93syl2anc 411 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { b ,  R } ,  RR* ,  <  )  e.  RR* )
9525, 90, 92, 94fvmptd3 5675 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b )  = inf ( { b ,  R } ,  RR* ,  <  ) )
9688, 95breq12d 4058 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a )  <_ 
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 b )  <-> inf ( {
a ,  R } ,  RR* ,  <  )  <_ inf ( { b ,  R } ,  RR* ,  <  ) ) )
9787, 96sylibrd 169 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a  <_  b  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  a )  <_  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b ) ) )
9829simprbi 275 . . . . . 6  |-  ( a  e.  ( 0 [,] +oo )  ->  0  <_ 
a )
9998ad2antrl 490 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <_  a )
10076simprbi 275 . . . . . 6  |-  ( b  e.  ( 0 [,] +oo )  ->  0  <_ 
b )
101100ad2antll 491 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <_  b )
10241adantr 276 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  0  <  R )
103 xrbdtri 11620 . . . . 5  |-  ( ( ( a  e.  RR*  /\  0  <_  a )  /\  ( b  e.  RR*  /\  0  <_  b )  /\  ( R  e.  RR*  /\  0  <  R ) )  -> inf ( {
( a +e
b ) ,  R } ,  RR* ,  <  )  <_  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  ) ) )
10471, 99, 78, 101, 72, 102, 103syl222anc 1266 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { ( a +e
b ) ,  R } ,  RR* ,  <  )  <_  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  ) ) )
105 preq1 3710 . . . . . 6  |-  ( z  =  ( a +e b )  ->  { z ,  R }  =  { (
a +e b ) ,  R }
)
106105infeq1d 7116 . . . . 5  |-  ( z  =  ( a +e b )  -> inf ( { z ,  R } ,  RR* ,  <  )  = inf ( { ( a +e b ) ,  R } ,  RR* ,  <  )
)
107 ge0xaddcl 10107 . . . . . 6  |-  ( ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo ) )  ->  ( a +e b )  e.  ( 0 [,] +oo ) )
108107adantl 277 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a +e b )  e.  ( 0 [,] +oo ) )
10971, 78xaddcld 10008 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
a +e b )  e.  RR* )
110 xrmincl 11610 . . . . . 6  |-  ( ( ( a +e
b )  e.  RR*  /\  R  e.  RR* )  -> inf ( { ( a +e b ) ,  R } ,  RR* ,  <  )  e. 
RR* )
111109, 72, 110syl2anc 411 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  -> inf ( { ( a +e
b ) ,  R } ,  RR* ,  <  )  e.  RR* )
11225, 106, 108, 111fvmptd3 5675 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  ( a +e
b ) )  = inf ( { ( a +e b ) ,  R } ,  RR* ,  <  ) )
11388, 95oveq12d 5964 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `
 a ) +e ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
) `  b )
)  =  (inf ( { a ,  R } ,  RR* ,  <  ) +einf ( { b ,  R } ,  RR* ,  <  )
) )
114104, 112, 1133brtr4d 4077 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  R  e.  RR* 
/\  0  <  R
)  /\  ( a  e.  ( 0 [,] +oo )  /\  b  e.  ( 0 [,] +oo )
) )  ->  (
( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  ( a +e
b ) )  <_ 
( ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
) `  a ) +e ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  ) ) `  b ) ) )
1151, 24, 70, 97, 114comet 15004 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  ( ( z  e.  ( 0 [,] +oo )  |-> inf ( { z ,  R } ,  RR* ,  <  )
)  o.  C )  e.  ( *Met `  X ) )
11618, 115eqeltrrd 2283 1  |-  ( ( C  e.  ( *Met `  X )  /\  R  e.  RR*  /\  0  <  R )  ->  D  e.  ( *Met `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   {cpr 3634   class class class wbr 4045    |-> cmpt 4106    X. cxp 4674    o. ccom 4680    Fn wfn 5267   -->wf 5268   ` cfv 5272  (class class class)co 5946    e. cmpo 5948  infcinf 7087   0cc0 7927   +oocpnf 8106   RR*cxr 8108    < clt 8109    <_ cle 8110   +ecxad 9894   [,]cicc 10015   *Metcxmet 14331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-map 6739  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-rp 9778  df-xneg 9896  df-xadd 9897  df-icc 10019  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-xmet 14339
This theorem is referenced by:  bdmet  15007  bdbl  15008  bdmopn  15009
  Copyright terms: Public domain W3C validator