| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnun | Unicode version | ||
| Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.) |
| Ref | Expression |
|---|---|
| fnun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5283 |
. . 3
| |
| 2 | df-fn 5283 |
. . 3
| |
| 3 | ineq12 3373 |
. . . . . . . . . . 11
| |
| 4 | 3 | eqeq1d 2215 |
. . . . . . . . . 10
|
| 5 | 4 | anbi2d 464 |
. . . . . . . . 9
|
| 6 | funun 5324 |
. . . . . . . . 9
| |
| 7 | 5, 6 | biimtrrdi 164 |
. . . . . . . 8
|
| 8 | dmun 4894 |
. . . . . . . . 9
| |
| 9 | uneq12 3326 |
. . . . . . . . 9
| |
| 10 | 8, 9 | eqtrid 2251 |
. . . . . . . 8
|
| 11 | 7, 10 | jctird 317 |
. . . . . . 7
|
| 12 | df-fn 5283 |
. . . . . . 7
| |
| 13 | 11, 12 | imbitrrdi 162 |
. . . . . 6
|
| 14 | 13 | expd 258 |
. . . . 5
|
| 15 | 14 | impcom 125 |
. . . 4
|
| 16 | 15 | an4s 588 |
. . 3
|
| 17 | 1, 2, 16 | syl2anb 291 |
. 2
|
| 18 | 17 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-fun 5282 df-fn 5283 |
| This theorem is referenced by: fnunsn 5392 fun 5459 foun 5553 f1oun 5554 xnn0nnen 10604 |
| Copyright terms: Public domain | W3C validator |