ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnun Unicode version

Theorem fnun 5323
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fnun  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)

Proof of Theorem fnun
StepHypRef Expression
1 df-fn 5220 . . 3  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
2 df-fn 5220 . . 3  |-  ( G  Fn  B  <->  ( Fun  G  /\  dom  G  =  B ) )
3 ineq12 3332 . . . . . . . . . . 11  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F  i^i  dom  G
)  =  ( A  i^i  B ) )
43eqeq1d 2186 . . . . . . . . . 10  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( dom  F  i^i  dom 
G )  =  (/)  <->  ( A  i^i  B )  =  (/) ) )
54anbi2d 464 . . . . . . . . 9  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G )  =  (/) )  <->  ( ( Fun  F  /\  Fun  G
)  /\  ( A  i^i  B )  =  (/) ) ) )
6 funun 5261 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
75, 6syl6bir 164 . . . . . . . 8  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  Fun  ( F  u.  G
) ) )
8 dmun 4835 . . . . . . . . 9  |-  dom  ( F  u.  G )  =  ( dom  F  u.  dom  G )
9 uneq12 3285 . . . . . . . . 9  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F  u.  dom  G
)  =  ( A  u.  B ) )
108, 9eqtrid 2222 . . . . . . . 8  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  dom  ( F  u.  G
)  =  ( A  u.  B ) )
117, 10jctird 317 . . . . . . 7  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  ( Fun  ( F  u.  G
)  /\  dom  ( F  u.  G )  =  ( A  u.  B
) ) ) )
12 df-fn 5220 . . . . . . 7  |-  ( ( F  u.  G )  Fn  ( A  u.  B )  <->  ( Fun  ( F  u.  G
)  /\  dom  ( F  u.  G )  =  ( A  u.  B
) ) )
1311, 12imbitrrdi 162 . . . . . 6  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
1413expd 258 . . . . 5  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( Fun  F  /\  Fun  G )  ->  (
( A  i^i  B
)  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) ) )
1514impcom 125 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  =  A  /\  dom  G  =  B ) )  ->  ( ( A  i^i  B )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B )
) )
1615an4s 588 . . 3  |-  ( ( ( Fun  F  /\  dom  F  =  A )  /\  ( Fun  G  /\  dom  G  =  B ) )  ->  (
( A  i^i  B
)  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
171, 2, 16syl2anb 291 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  i^i  B )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
1817imp 124 1  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    u. cun 3128    i^i cin 3129   (/)c0 3423   dom cdm 4627   Fun wfun 5211    Fn wfn 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-id 4294  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-fun 5219  df-fn 5220
This theorem is referenced by:  fnunsn  5324  fun  5389  foun  5481  f1oun  5482
  Copyright terms: Public domain W3C validator