ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnun Unicode version

Theorem fnun 5304
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
Assertion
Ref Expression
fnun  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)

Proof of Theorem fnun
StepHypRef Expression
1 df-fn 5201 . . 3  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
2 df-fn 5201 . . 3  |-  ( G  Fn  B  <->  ( Fun  G  /\  dom  G  =  B ) )
3 ineq12 3323 . . . . . . . . . . 11  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F  i^i  dom  G
)  =  ( A  i^i  B ) )
43eqeq1d 2179 . . . . . . . . . 10  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( dom  F  i^i  dom 
G )  =  (/)  <->  ( A  i^i  B )  =  (/) ) )
54anbi2d 461 . . . . . . . . 9  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G )  =  (/) )  <->  ( ( Fun  F  /\  Fun  G
)  /\  ( A  i^i  B )  =  (/) ) ) )
6 funun 5242 . . . . . . . . 9  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
75, 6syl6bir 163 . . . . . . . 8  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  Fun  ( F  u.  G
) ) )
8 dmun 4818 . . . . . . . . 9  |-  dom  ( F  u.  G )  =  ( dom  F  u.  dom  G )
9 uneq12 3276 . . . . . . . . 9  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F  u.  dom  G
)  =  ( A  u.  B ) )
108, 9eqtrid 2215 . . . . . . . 8  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  dom  ( F  u.  G
)  =  ( A  u.  B ) )
117, 10jctird 315 . . . . . . 7  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  ( Fun  ( F  u.  G
)  /\  dom  ( F  u.  G )  =  ( A  u.  B
) ) ) )
12 df-fn 5201 . . . . . . 7  |-  ( ( F  u.  G )  Fn  ( A  u.  B )  <->  ( Fun  ( F  u.  G
)  /\  dom  ( F  u.  G )  =  ( A  u.  B
) ) )
1311, 12syl6ibr 161 . . . . . 6  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( ( Fun  F  /\  Fun  G )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
1413expd 256 . . . . 5  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  (
( Fun  F  /\  Fun  G )  ->  (
( A  i^i  B
)  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) ) )
1514impcom 124 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  =  A  /\  dom  G  =  B ) )  ->  ( ( A  i^i  B )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B )
) )
1615an4s 583 . . 3  |-  ( ( ( Fun  F  /\  dom  F  =  A )  /\  ( Fun  G  /\  dom  G  =  B ) )  ->  (
( A  i^i  B
)  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
171, 2, 16syl2anb 289 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( A  i^i  B )  =  (/)  ->  ( F  u.  G )  Fn  ( A  u.  B
) ) )
1817imp 123 1  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G )  Fn  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    u. cun 3119    i^i cin 3120   (/)c0 3414   dom cdm 4611   Fun wfun 5192    Fn wfn 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-fun 5200  df-fn 5201
This theorem is referenced by:  fnunsn  5305  fun  5370  foun  5461  f1oun  5462
  Copyright terms: Public domain W3C validator