ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsdivcl Unicode version

Theorem dvdsdivcl 11788
Description: The complement of a divisor of  N is also a divisor of  N. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
Assertion
Ref Expression
dvdsdivcl  |-  ( ( N  e.  NN  /\  A  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  A )  e. 
{ x  e.  NN  |  x  ||  N }
)
Distinct variable groups:    x, A    x, N

Proof of Theorem dvdsdivcl
StepHypRef Expression
1 breq1 3985 . . . . 5  |-  ( x  =  A  ->  (
x  ||  N  <->  A  ||  N
) )
21elrab 2882 . . . 4  |-  ( A  e.  { x  e.  NN  |  x  ||  N }  <->  ( A  e.  NN  /\  A  ||  N ) )
3 nndivdvds 11736 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  A  e.  NN )  ->  ( A  ||  N  <->  ( N  /  A )  e.  NN ) )
43biimpd 143 . . . . . . . 8  |-  ( ( N  e.  NN  /\  A  e.  NN )  ->  ( A  ||  N  ->  ( N  /  A
)  e.  NN ) )
54expcom 115 . . . . . . 7  |-  ( A  e.  NN  ->  ( N  e.  NN  ->  ( A  ||  N  -> 
( N  /  A
)  e.  NN ) ) )
65com23 78 . . . . . 6  |-  ( A  e.  NN  ->  ( A  ||  N  ->  ( N  e.  NN  ->  ( N  /  A )  e.  NN ) ) )
76imp 123 . . . . 5  |-  ( ( A  e.  NN  /\  A  ||  N )  -> 
( N  e.  NN  ->  ( N  /  A
)  e.  NN ) )
8 nnne0 8885 . . . . . . . 8  |-  ( A  e.  NN  ->  A  =/=  0 )
98anim1i 338 . . . . . . 7  |-  ( ( A  e.  NN  /\  A  ||  N )  -> 
( A  =/=  0  /\  A  ||  N ) )
109ancomd 265 . . . . . 6  |-  ( ( A  e.  NN  /\  A  ||  N )  -> 
( A  ||  N  /\  A  =/=  0
) )
11 divconjdvds 11787 . . . . . 6  |-  ( ( A  ||  N  /\  A  =/=  0 )  -> 
( N  /  A
)  ||  N )
1210, 11syl 14 . . . . 5  |-  ( ( A  e.  NN  /\  A  ||  N )  -> 
( N  /  A
)  ||  N )
137, 12jctird 315 . . . 4  |-  ( ( A  e.  NN  /\  A  ||  N )  -> 
( N  e.  NN  ->  ( ( N  /  A )  e.  NN  /\  ( N  /  A
)  ||  N )
) )
142, 13sylbi 120 . . 3  |-  ( A  e.  { x  e.  NN  |  x  ||  N }  ->  ( N  e.  NN  ->  (
( N  /  A
)  e.  NN  /\  ( N  /  A
)  ||  N )
) )
1514impcom 124 . 2  |-  ( ( N  e.  NN  /\  A  e.  { x  e.  NN  |  x  ||  N } )  ->  (
( N  /  A
)  e.  NN  /\  ( N  /  A
)  ||  N )
)
16 breq1 3985 . . 3  |-  ( x  =  ( N  /  A )  ->  (
x  ||  N  <->  ( N  /  A )  ||  N
) )
1716elrab 2882 . 2  |-  ( ( N  /  A )  e.  { x  e.  NN  |  x  ||  N }  <->  ( ( N  /  A )  e.  NN  /\  ( N  /  A )  ||  N ) )
1815, 17sylibr 133 1  |-  ( ( N  e.  NN  /\  A  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  A )  e. 
{ x  e.  NN  |  x  ||  N }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136    =/= wne 2336   {crab 2448   class class class wbr 3982  (class class class)co 5842   0cc0 7753    / cdiv 8568   NNcn 8857    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by:  dvdsflip  11789
  Copyright terms: Public domain W3C validator