ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islring Unicode version

Theorem islring 13925
Description: The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
islring.b  |-  B  =  ( Base `  R
)
islring.a  |-  .+  =  ( +g  `  R )
islring.1  |-  .1.  =  ( 1r `  R )
islring.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
islring  |-  ( R  e. LRing 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  =  .1.  ->  ( x  e.  U  \/  y  e.  U )
) ) )
Distinct variable groups:    x, R, y   
x, B, y
Allowed substitution hints:    .+ ( x, y)    U( x, y)    .1. ( x, y)

Proof of Theorem islring
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 5575 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
2 islring.b . . . 4  |-  B  =  ( Base `  R
)
31, 2eqtr4di 2255 . . 3  |-  ( r  =  R  ->  ( Base `  r )  =  B )
4 fveq2 5575 . . . . . . . 8  |-  ( r  =  R  ->  ( +g  `  r )  =  ( +g  `  R
) )
5 islring.a . . . . . . . 8  |-  .+  =  ( +g  `  R )
64, 5eqtr4di 2255 . . . . . . 7  |-  ( r  =  R  ->  ( +g  `  r )  = 
.+  )
76oveqd 5960 . . . . . 6  |-  ( r  =  R  ->  (
x ( +g  `  r
) y )  =  ( x  .+  y
) )
8 fveq2 5575 . . . . . . 7  |-  ( r  =  R  ->  ( 1r `  r )  =  ( 1r `  R
) )
9 islring.1 . . . . . . 7  |-  .1.  =  ( 1r `  R )
108, 9eqtr4di 2255 . . . . . 6  |-  ( r  =  R  ->  ( 1r `  r )  =  .1.  )
117, 10eqeq12d 2219 . . . . 5  |-  ( r  =  R  ->  (
( x ( +g  `  r ) y )  =  ( 1r `  r )  <->  ( x  .+  y )  =  .1.  ) )
12 fveq2 5575 . . . . . . . 8  |-  ( r  =  R  ->  (Unit `  r )  =  (Unit `  R ) )
13 islring.u . . . . . . . 8  |-  U  =  (Unit `  R )
1412, 13eqtr4di 2255 . . . . . . 7  |-  ( r  =  R  ->  (Unit `  r )  =  U )
1514eleq2d 2274 . . . . . 6  |-  ( r  =  R  ->  (
x  e.  (Unit `  r )  <->  x  e.  U ) )
1614eleq2d 2274 . . . . . 6  |-  ( r  =  R  ->  (
y  e.  (Unit `  r )  <->  y  e.  U ) )
1715, 16orbi12d 794 . . . . 5  |-  ( r  =  R  ->  (
( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r )
)  <->  ( x  e.  U  \/  y  e.  U ) ) )
1811, 17imbi12d 234 . . . 4  |-  ( r  =  R  ->  (
( ( x ( +g  `  r ) y )  =  ( 1r `  r )  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) )  <-> 
( ( x  .+  y )  =  .1. 
->  ( x  e.  U  \/  y  e.  U
) ) ) )
193, 18raleqbidv 2717 . . 3  |-  ( r  =  R  ->  ( A. y  e.  ( Base `  r ) ( ( x ( +g  `  r ) y )  =  ( 1r `  r )  ->  (
x  e.  (Unit `  r )  \/  y  e.  (Unit `  r )
) )  <->  A. y  e.  B  ( (
x  .+  y )  =  .1.  ->  ( x  e.  U  \/  y  e.  U ) ) ) )
203, 19raleqbidv 2717 . 2  |-  ( r  =  R  ->  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) )  <->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  =  .1. 
->  ( x  e.  U  \/  y  e.  U
) ) ) )
21 df-lring 13924 . 2  |- LRing  =  {
r  e. NzRing  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( x ( +g  `  r
) y )  =  ( 1r `  r
)  ->  ( x  e.  (Unit `  r )  \/  y  e.  (Unit `  r ) ) ) }
2220, 21elrab2 2931 1  |-  ( R  e. LRing 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  =  .1.  ->  ( x  e.  U  \/  y  e.  U )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1372    e. wcel 2175   A.wral 2483   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   1rcur 13692  Unitcui 13820  NzRingcnzr 13912  LRingclring 13923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946  df-lring 13924
This theorem is referenced by:  lringuplu  13929
  Copyright terms: Public domain W3C validator