| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrab3 | Unicode version | ||
| Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrab3.1 |
|
| Ref | Expression |
|---|---|
| ssrab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab3.1 |
. 2
| |
| 2 | ssrab2 3286 |
. 2
| |
| 3 | 1, 2 | eqsstri 3233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-in 3180 df-ss 3187 |
| This theorem is referenced by: pcprecl 12727 pcprendvds 12728 4sqlem13m 12841 4sqlem14 12842 4sqlem17 12845 nmzsubg 13661 nmznsg 13664 conjnmz 13730 conjnmzb 13731 nzrring 14060 lringnzr 14070 rrgeq0 14142 rrgss 14143 mpodvdsmulf1o 15577 fsumdvdsmul 15578 lgsfcl2 15598 |
| Copyright terms: Public domain | W3C validator |