| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrab3 | Unicode version | ||
| Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrab3.1 |
|
| Ref | Expression |
|---|---|
| ssrab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab3.1 |
. 2
| |
| 2 | ssrab2 3278 |
. 2
| |
| 3 | 1, 2 | eqsstri 3225 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-in 3172 df-ss 3179 |
| This theorem is referenced by: pcprecl 12612 pcprendvds 12613 4sqlem13m 12726 4sqlem14 12727 4sqlem17 12730 nmzsubg 13546 nmznsg 13549 conjnmz 13615 conjnmzb 13616 nzrring 13945 lringnzr 13955 rrgeq0 14027 rrgss 14028 mpodvdsmulf1o 15462 fsumdvdsmul 15463 lgsfcl2 15483 |
| Copyright terms: Public domain | W3C validator |