ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab3 Unicode version

Theorem ssrab3 3310
Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
ssrab3.1  |-  B  =  { x  e.  A  |  ph }
Assertion
Ref Expression
ssrab3  |-  B  C_  A
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ssrab3
StepHypRef Expression
1 ssrab3.1 . 2  |-  B  =  { x  e.  A  |  ph }
2 ssrab2 3309 . 2  |-  { x  e.  A  |  ph }  C_  A
31, 2eqsstri 3256 1  |-  B  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395   {crab 2512    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-in 3203  df-ss 3210
This theorem is referenced by:  pcprecl  12812  pcprendvds  12813  4sqlem13m  12926  4sqlem14  12927  4sqlem17  12930  nmzsubg  13747  nmznsg  13750  conjnmz  13816  conjnmzb  13817  nzrring  14147  lringnzr  14157  rrgeq0  14229  rrgss  14230  mpodvdsmulf1o  15664  fsumdvdsmul  15665  lgsfcl2  15685
  Copyright terms: Public domain W3C validator