| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrab3 | Unicode version | ||
| Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrab3.1 |
|
| Ref | Expression |
|---|---|
| ssrab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab3.1 |
. 2
| |
| 2 | ssrab2 3269 |
. 2
| |
| 3 | 1, 2 | eqsstri 3216 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 |
| This theorem is referenced by: pcprecl 12483 pcprendvds 12484 4sqlem13m 12597 4sqlem14 12598 4sqlem17 12601 nmzsubg 13416 nmznsg 13419 conjnmz 13485 conjnmzb 13486 nzrring 13815 lringnzr 13825 rrgeq0 13897 rrgss 13898 mpodvdsmulf1o 15310 fsumdvdsmul 15311 lgsfcl2 15331 |
| Copyright terms: Public domain | W3C validator |