| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssrab3 | Unicode version | ||
| Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| ssrab3.1 | 
 | 
| Ref | Expression | 
|---|---|
| ssrab3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab3.1 | 
. 2
 | |
| 2 | ssrab2 3268 | 
. 2
 | |
| 3 | 1, 2 | eqsstri 3215 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: pcprecl 12458 pcprendvds 12459 4sqlem13m 12572 4sqlem14 12573 4sqlem17 12576 nmzsubg 13340 nmznsg 13343 conjnmz 13409 conjnmzb 13410 nzrring 13739 lringnzr 13749 rrgeq0 13821 rrgss 13822 mpodvdsmulf1o 15226 fsumdvdsmul 15227 lgsfcl2 15247 | 
| Copyright terms: Public domain | W3C validator |