ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab3 Unicode version

Theorem ssrab3 3269
Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
ssrab3.1  |-  B  =  { x  e.  A  |  ph }
Assertion
Ref Expression
ssrab3  |-  B  C_  A
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ssrab3
StepHypRef Expression
1 ssrab3.1 . 2  |-  B  =  { x  e.  A  |  ph }
2 ssrab2 3268 . 2  |-  { x  e.  A  |  ph }  C_  A
31, 2eqsstri 3215 1  |-  B  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {crab 2479    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-in 3163  df-ss 3170
This theorem is referenced by:  pcprecl  12458  pcprendvds  12459  4sqlem13m  12572  4sqlem14  12573  4sqlem17  12576  nmzsubg  13340  nmznsg  13343  conjnmz  13409  conjnmzb  13410  nzrring  13739  lringnzr  13749  rrgeq0  13821  rrgss  13822  mpodvdsmulf1o  15226  fsumdvdsmul  15227  lgsfcl2  15247
  Copyright terms: Public domain W3C validator