ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab3 Unicode version

Theorem ssrab3 3265
Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
ssrab3.1  |-  B  =  { x  e.  A  |  ph }
Assertion
Ref Expression
ssrab3  |-  B  C_  A
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ssrab3
StepHypRef Expression
1 ssrab3.1 . 2  |-  B  =  { x  e.  A  |  ph }
2 ssrab2 3264 . 2  |-  { x  e.  A  |  ph }  C_  A
31, 2eqsstri 3211 1  |-  B  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   {crab 2476    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-in 3159  df-ss 3166
This theorem is referenced by:  pcprecl  12427  pcprendvds  12428  4sqlem13m  12541  4sqlem14  12542  4sqlem17  12545  nmzsubg  13280  nmznsg  13283  conjnmz  13349  conjnmzb  13350  nzrring  13679  lringnzr  13689  rrgeq0  13761  rrgss  13762  lgsfcl2  15122
  Copyright terms: Public domain W3C validator