ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab3 Unicode version

Theorem ssrab3 3227
Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
ssrab3.1  |-  B  =  { x  e.  A  |  ph }
Assertion
Ref Expression
ssrab3  |-  B  C_  A
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ssrab3
StepHypRef Expression
1 ssrab3.1 . 2  |-  B  =  { x  e.  A  |  ph }
2 ssrab2 3226 . 2  |-  { x  e.  A  |  ph }  C_  A
31, 2eqsstri 3173 1  |-  B  C_  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343   {crab 2447    C_ wss 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-rab 2452  df-in 3121  df-ss 3128
This theorem is referenced by:  pcprecl  12217  pcprendvds  12218  lgsfcl2  13507
  Copyright terms: Public domain W3C validator