| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrab3 | Unicode version | ||
| Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrab3.1 |
|
| Ref | Expression |
|---|---|
| ssrab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab3.1 |
. 2
| |
| 2 | ssrab2 3309 |
. 2
| |
| 3 | 1, 2 | eqsstri 3256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-in 3203 df-ss 3210 |
| This theorem is referenced by: pcprecl 12812 pcprendvds 12813 4sqlem13m 12926 4sqlem14 12927 4sqlem17 12930 nmzsubg 13747 nmznsg 13750 conjnmz 13816 conjnmzb 13817 nzrring 14147 lringnzr 14157 rrgeq0 14229 rrgss 14230 mpodvdsmulf1o 15664 fsumdvdsmul 15665 lgsfcl2 15685 |
| Copyright terms: Public domain | W3C validator |