ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlem1 Unicode version

Theorem modfsummodlem1 10850
Description: Lemma for modfsummod 10852. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Assertion
Ref Expression
modfsummodlem1  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
Distinct variable groups:    A, k    z,
k
Allowed substitution hints:    A( z)    B( z, k)

Proof of Theorem modfsummodlem1
StepHypRef Expression
1 vsnid 3476 . . 3  |-  z  e. 
{ z }
2 elun2 3168 . . 3  |-  ( z  e.  { z }  ->  z  e.  ( A  u.  { z } ) )
31, 2ax-mp 7 . 2  |-  z  e.  ( A  u.  {
z } )
4 rspcsbela 2987 . 2  |-  ( ( z  e.  ( A  u.  { z } )  /\  A. k  e.  ( A  u.  {
z } ) B  e.  ZZ )  ->  [_ z  /  k ]_ B  e.  ZZ )
53, 4mpan 415 1  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1438   A.wral 2359   [_csb 2933    u. cun 2997   {csn 3446   ZZcz 8750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-sbc 2841  df-csb 2934  df-un 3003  df-in 3005  df-ss 3012  df-sn 3452
This theorem is referenced by:  modfsummodlemstep  10851
  Copyright terms: Public domain W3C validator