HomeHome Intuitionistic Logic Explorer
Theorem List (p. 115 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11401-11500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfisumcom2 11401* Interchange order of summation. Note that  B ( j ) and  D
( k ) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  k  e.  C ) 
 ->  D  e.  Fin )   &    |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  E  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  E  =  sum_ k  e.  C  sum_ j  e.  D  E )
 
Theoremfsumcom 11402* Interchange order of summation. (Contributed by NM, 15-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_
 k  e.  B  C  =  sum_ k  e.  B  sum_
 j  e.  A  C )
 
Theoremfsum0diaglem 11403* Lemma for fisum0diag 11404. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
 |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  (
 0 ... ( N  -  j ) ) ) 
 ->  ( k  e.  (
 0 ... N )  /\  j  e.  ( 0 ... ( N  -  k
 ) ) ) )
 
Theoremfisum0diag 11404* Two ways to express "the sum of  A ( j ,  k ) over the triangular region  M  <_  j,  M  <_  k,  j  +  k  <_  N". (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
 |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  sum_ j  e.  ( 0 ... N ) sum_ k  e.  (
 0 ... ( N  -  j ) ) A  =  sum_ k  e.  (
 0 ... N ) sum_ j  e.  ( 0 ... ( N  -  k
 ) ) A )
 
Theoremmptfzshft 11405* 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  (
 j  e.  ( ( M  +  K )
 ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K )
 ... ( N  +  K ) ) -1-1-onto-> ( M
 ... N ) )
 
Theoremfsumrev 11406* Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( K  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M ) ) B )
 
Theoremfsumshft 11407* Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  -  K )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K ) ) B )
 
Theoremfsumshftm 11408* Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  +  K )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K ) ) B )
 
Theoremfisumrev2 11409* Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( ( M  +  N )  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N ) B )
 
Theoremfisum0diag2 11410* Two ways to express "the sum of  A ( j ,  k ) over the triangular region  0  <_  j, 
0  <_  k,  j  +  k  <_  N". (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( x  =  k 
 ->  B  =  A )   &    |-  ( x  =  (
 k  -  j ) 
 ->  B  =  C )   &    |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  sum_ j  e.  ( 0 ... N ) sum_ k  e.  (
 0 ... ( N  -  j ) ) A  =  sum_ k  e.  (
 0 ... N ) sum_ j  e.  ( 0 ... k ) C )
 
Theoremfsummulc2 11411* A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B ) )
 
Theoremfsummulc1 11412* A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  x.  C )  =  sum_ k  e.  A  ( B  x.  C ) )
 
Theoremfsumdivapc 11413* A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  /  C )  =  sum_ k  e.  A  ( B 
 /  C ) )
 
Theoremfsumneg 11414* Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  -u B  =  -u sum_ k  e.  A  B )
 
Theoremfsumsub 11415* Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  ( B  -  C )  =  ( sum_ k  e.  A  B  -  sum_ k  e.  A  C ) )
 
Theoremfsum2mul 11416* Separate the nested sum of the product  C ( j )  x.  D ( k ). (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  D  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_
 k  e.  B  ( C  x.  D )  =  ( sum_ j  e.  A  C  x.  sum_ k  e.  B  D ) )
 
Theoremfsumconst 11417* The sum of constant terms ( k is not free in  B). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
 sum_ k  e.  A  B  =  ( ( `  A )  x.  B ) )
 
Theoremfsumdifsnconst 11418* The sum of constant terms ( k is not free in  C) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  CC )  -> 
 sum_ k  e.  ( A  \  { B }
 ) C  =  ( ( ( `  A )  -  1 )  x.  C ) )
 
Theoremmodfsummodlem1 11419* Lemma for modfsummod 11421. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
 |-  ( A. k  e.  ( A  u.  {
 z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
 
Theoremmodfsummodlemstep 11420* Induction step for modfsummod 11421. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  A. k  e.  ( A  u.  { z }
 ) B  e.  ZZ )   &    |-  ( ph  ->  -.  z  e.  A )   &    |-  ( ph  ->  (
 sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N ) 
 mod  N ) )   =>    |-  ( ph  ->  (
 sum_ k  e.  ( A  u.  { z }
 ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N ) 
 mod  N ) )
 
Theoremmodfsummod 11421* A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B 
 mod  N )  mod  N ) )
 
Theoremfsumge0 11422* If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   =>    |-  ( ph  ->  0  <_ 
 sum_ k  e.  A  B )
 
Theoremfsumlessfi 11423* A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  C  e.  Fin )   =>    |-  ( ph  ->  sum_ k  e.  C  B  <_  sum_ k  e.  A  B )
 
Theoremfsumge1 11424* A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   &    |-  ( k  =  M  ->  B  =  C )   &    |-  ( ph  ->  M  e.  A )   =>    |-  ( ph  ->  C 
 <_  sum_ k  e.  A  B )
 
Theoremfsum00 11425* A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  =  0 )
 )
 
Theoremfsumle 11426* If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <_  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
 
Theoremfsumlt 11427* If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <  sum_ k  e.  A  C )
 
Theoremfsumabs 11428* Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B )
 )
 
Theoremtelfsumo 11429* Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  N  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
 
Theoremtelfsumo2 11430* Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  N  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( C  -  B )  =  ( E  -  D ) )
 
Theoremtelfsum 11431* Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  +  1 ) ) ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) ( B  -  C )  =  ( D  -  E ) )
 
Theoremtelfsum2 11432* Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  +  1 ) ) ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) ( C  -  B )  =  ( E  -  D ) )
 
Theoremfsumparts 11433* Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( k  =  j 
 ->  ( A  =  B  /\  V  =  W ) )   &    |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X ) )   &    |-  (
 k  =  M  ->  ( A  =  D  /\  V  =  Y )
 )   &    |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_
 j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
 
Theoremfsumrelem 11434* Lemma for fsumre 11435, fsumim 11436, and fsumcj 11437. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  F : CC --> CC   &    |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  ( x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )   =>    |-  ( ph  ->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `
  B ) )
 
Theoremfsumre 11435* The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( Re `  B ) )
 
Theoremfsumim 11436* The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( Im `  B ) )
 
Theoremfsumcj 11437* The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( * `  B ) )
 
Theoremiserabs 11438* Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  A )   &    |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( abs `  ( F `  k
 ) ) )   =>    |-  ( ph  ->  ( abs `  A )  <_  B )
 
Theoremcvgcmpub 11439* An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k ) )   =>    |-  ( ph  ->  B  <_  A )
 
Theoremfsumiun 11440* Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  Fin )   &    |-  ( ph  -> Disj  x  e.  A  B )   &    |-  ( ( ph  /\  ( x  e.  A  /\  k  e.  B )
 )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
 
Theoremhashiun 11441* The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  Fin )   &    |-  ( ph  -> Disj  x  e.  A  B )   =>    |-  ( ph  ->  ( ` 
 U_ x  e.  A  B )  =  sum_ x  e.  A  ( `  B ) )
 
Theoremhash2iun 11442* The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  B  e.  Fin )   &    |-  (
 ( ph  /\  x  e.  A  /\  y  e.  B )  ->  C  e.  Fin )   &    |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )   &    |-  (
 ( ph  /\  x  e.  A )  -> Disj  y  e.  B  C )   =>    |-  ( ph  ->  ( `  U_ x  e.  A  U_ y  e.  B  C )  =  sum_ x  e.  A  sum_ y  e.  B  ( `  C ) )
 
Theoremhash2iun1dif1 11443* The cardinality of a nested disjoint indexed union. (Contributed by AV, 9-Jan-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  B  =  ( A  \  { x } )   &    |-  ( ( ph  /\  x  e.  A  /\  y  e.  B )  ->  C  e.  Fin )   &    |-  ( ph  -> Disj  x  e.  A  U_ y  e.  B  C )   &    |-  ( ( ph  /\  x  e.  A )  -> Disj  y  e.  B  C )   &    |-  (
 ( ph  /\  x  e.  A  /\  y  e.  B )  ->  ( `  C )  =  1 )   =>    |-  ( ph  ->  ( ` 
 U_ x  e.  A  U_ y  e.  B  C )  =  ( ( `  A )  x.  (
 ( `  A )  -  1 ) ) )
 
Theoremhashrabrex 11444* The number of elements in a class abstraction with a restricted existential quantification. (Contributed by Alexander van der Vekens, 29-Jul-2018.)
 |-  ( ph  ->  Y  e.  Fin )   &    |-  ( ( ph  /\  y  e.  Y ) 
 ->  { x  e.  X  |  ps }  e.  Fin )   &    |-  ( ph  -> Disj  y  e.  Y  { x  e.  X  |  ps }
 )   =>    |-  ( ph  ->  ( ` 
 { x  e.  X  |  E. y  e.  Y  ps } )  =  sum_ y  e.  Y  ( `  { x  e.  X  |  ps }
 ) )
 
Theoremhashuni 11445* The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A 
 C_  Fin )   &    |-  ( ph  -> Disj  x  e.  A  x )   =>    |-  ( ph  ->  ( `  U. A )  = 
 sum_ x  e.  A  ( `  x ) )
 
4.8.3  The binomial theorem
 
Theorembinomlem 11446* Lemma for binom 11447 (binomial theorem). Inductive step. (Contributed by NM, 6-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ps  ->  (
 ( A  +  B ) ^ N )  = 
 sum_ k  e.  (
 0 ... N ) ( ( N  _C  k
 )  x.  ( ( A ^ ( N  -  k ) )  x.  ( B ^
 k ) ) ) )   =>    |-  ( ( ph  /\  ps )  ->  ( ( A  +  B ) ^
 ( N  +  1 ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( N  +  1 )  _C  k )  x.  ( ( A ^ ( ( N  +  1 )  -  k ) )  x.  ( B ^ k
 ) ) ) )
 
Theorembinom 11447* The binomial theorem:  ( A  +  B
) ^ N is the sum from  k  =  0 to  N of  ( N  _C  k )  x.  ( ( A ^
k )  x.  ( B ^ ( N  -  k ) ). Theorem 15-2.8 of [Gleason] p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem 11446. This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  N  e.  NN0 )  ->  ( ( A  +  B ) ^ N )  =  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k )  x.  ( ( A ^
 ( N  -  k
 ) )  x.  ( B ^ k ) ) ) )
 
Theorembinom1p 11448* Special case of the binomial theorem for  ( 1  +  A
) ^ N. (Contributed by Paul Chapman, 10-May-2007.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( ( 1  +  A ) ^ N )  =  sum_ k  e.  ( 0 ...
 N ) ( ( N  _C  k )  x.  ( A ^
 k ) ) )
 
Theorembinom11 11449* Special case of the binomial theorem for  2 ^ N. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( N  e.  NN0  ->  ( 2 ^ N )  =  sum_ k  e.  ( 0 ... N ) ( N  _C  k ) )
 
Theorembinom1dif 11450* A summation for the difference between  ( ( A  + 
1 ) ^ N
) and  ( A ^ N ). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
 
Theorembcxmaslem1 11451 Lemma for bcxmas 11452. (Contributed by Paul Chapman, 18-May-2007.)
 |-  ( A  =  B  ->  ( ( N  +  A )  _C  A )  =  ( ( N  +  B )  _C  B ) )
 
Theorembcxmas 11452* Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  ->  ( ( ( N  +  1 )  +  M )  _C  M )  =  sum_ j  e.  (
 0 ... M ) ( ( N  +  j
 )  _C  j )
 )
 
4.8.4  Infinite sums (cont.)
 
Theoremisumshft 11453* Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  ( M  +  K ) )   &    |-  (
 j  =  ( K  +  k )  ->  A  =  B )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  W ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
 
Theoremisumsplit 11454* Split off the first  N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  (
 sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A ) )
 
Theoremisum1p 11455* The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A ) )
 
Theoremisumnn0nn 11456* Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( k  =  0 
 ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  A  e.  CC )   &    |-  ( ph  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e. 
 NN0  A  =  ( B  +  sum_ k  e. 
 NN  A ) )
 
Theoremisumrpcl 11457* The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR+ )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  W  A  e.  RR+ )
 
Theoremisumle 11458* Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  <_  B )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  <_  sum_ k  e.  Z  B )
 
Theoremisumlessdc 11459* A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  B )   &    |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  B )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
 
4.8.5  Miscellaneous converging and diverging sequences
 
Theoremdivcnv 11460* The sequence of reciprocals of positive integers, multiplied by the factor  A, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
 |-  ( A  e.  CC  ->  ( n  e.  NN  |->  ( A  /  n ) )  ~~>  0 )
 
4.8.6  Arithmetic series
 
Theoremarisum 11461* Arithmetic series sum of the first 
N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1
 ... N ) k  =  ( ( ( N ^ 2 )  +  N )  / 
 2 ) )
 
Theoremarisum2 11462* Arithmetic series sum of the first 
N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0
 ... ( N  -  1 ) ) k  =  ( ( ( N ^ 2 )  -  N )  / 
 2 ) )
 
Theoremtrireciplem 11463 Lemma for trirecip 11464. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |-  F  =  ( n  e.  NN  |->  ( 1 
 /  ( n  x.  ( n  +  1
 ) ) ) )   =>    |-  seq 1 (  +  ,  F )  ~~>  1
 
Theoremtrirecip 11464 The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |- 
 sum_ k  e.  NN  ( 2  /  (
 k  x.  ( k  +  1 ) ) )  =  2
 
4.8.7  Geometric series
 
Theoremexpcnvap0 11465* A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexpcnvre 11466* A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexpcnv 11467* A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexplecnv 11468* A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_  ( A ^ k ) )   =>    |-  ( ph  ->  F  ~~>  0 )
 
Theoremgeosergap 11469* The value of the finite geometric series  A ^ M  +  A ^ ( M  + 
1 )  +...  +  A ^
( N  -  1 ). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  sum_ k  e.  ( M..^ N ) ( A ^ k
 )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
 
Theoremgeoserap 11470* The value of the finite geometric series  1  +  A ^
1  +  A ^
2  +...  +  A ^
( N  -  1 ). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  1 )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
 )  =  ( ( 1  -  ( A ^ N ) ) 
 /  ( 1  -  A ) ) )
 
Theorempwm1geoserap1 11471* The n-th power of a number decreased by 1 expressed by the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^ ( N  - 
1 ). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A #  1 )   =>    |-  ( ph  ->  (
 ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
 ) ) )
 
Theoremabsltap 11472 Less-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  B )   =>    |-  ( ph  ->  A #  B )
 
Theoremabsgtap 11473 Greater-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  B  <  ( abs `  A ) )   =>    |-  ( ph  ->  A #  B )
 
Theoremgeolim 11474* The partial sums in the infinite series  1  +  A ^
1  +  A ^
2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( A ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeolim2 11475* The partial sums in the geometric series  A ^ M  +  A ^ ( M  + 
1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  =  ( A ^
 k ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
 
Theoremgeoreclim 11476* The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  1  <  ( abs `  A ) )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( ( 1  /  A ) ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( A  /  ( A  -  1 ) ) )
 
Theoremgeo2sum 11477* The value of the finite geometric series  2 ^ -u 1  +  2 ^ -u 2  +...  +  2 ^
-u N, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  sum_ k  e.  (
 1 ... N ) ( A  /  ( 2 ^ k ) )  =  ( A  -  ( A  /  (
 2 ^ N ) ) ) )
 
Theoremgeo2sum2 11478* The value of the finite geometric series  1  +  2  + 
4  +  8  +...  +  2 ^ ( N  -  1 ). (Contributed by Mario Carneiro, 7-Sep-2016.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0..^ N ) ( 2 ^ k )  =  ( ( 2 ^ N )  -  1
 ) )
 
Theoremgeo2lim 11479* The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
 |-  F  =  ( k  e.  NN  |->  ( A 
 /  ( 2 ^
 k ) ) )   =>    |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
 
Theoremgeoisum 11480* The infinite sum of  1  +  A ^ 1  +  A ^ 2... is  ( 1  /  ( 1  -  A ) ). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN0  ( A ^ k )  =  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeoisumr 11481* The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  1  <  ( abs `  A ) ) 
 ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^ k
 )  =  ( A 
 /  ( A  -  1 ) ) )
 
Theoremgeoisum1 11482* The infinite sum of  A ^ 1  +  A ^ 2... is  ( A  /  ( 1  -  A ) ). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN  ( A ^ k )  =  ( A  /  (
 1  -  A ) ) )
 
Theoremgeoisum1c 11483* The infinite sum of  A  x.  ( R ^ 1 )  +  A  x.  ( R ^ 2 )... is  ( A  x.  R )  /  (
1  -  R ). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( A  x.  ( R ^
 k ) )  =  ( ( A  x.  R )  /  (
 1  -  R ) ) )
 
Theorem0.999... 11484 The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e.  9  /  1 0 ^ 1  +  9  /  1 0 ^ 2  +  9  / 
1 0 ^ 3  +  ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
 |- 
 sum_ k  e.  NN  ( 9  /  (; 1 0 ^ k ) )  =  1
 
Theoremgeoihalfsum 11485 Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 11482. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 11484 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
 |- 
 sum_ k  e.  NN  ( 1  /  (
 2 ^ k ) )  =  1
 
4.8.8  Ratio test for infinite series convergence
 
Theoremcvgratnnlembern 11486 Lemma for cvgratnn 11494. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  ( A ^ M )  < 
 ( ( 1  /  ( ( 1  /  A )  -  1
 ) )  /  M ) )
 
Theoremcvgratnnlemnexp 11487* Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 15-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( abs `  ( F `  N ) )  <_  ( ( abs `  ( F `  1 ) )  x.  ( A ^
 ( N  -  1
 ) ) ) )
 
Theoremcvgratnnlemmn 11488* Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 15-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( F `  N ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M ) ) ) )
 
Theoremcvgratnnlemseq 11489* Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( (  seq 1 (  +  ,  F ) `  N )  -  (  seq 1
 (  +  ,  F ) `  M ) )  =  sum_ i  e.  (
 ( M  +  1 ) ... N ) ( F `  i
 ) )
 
Theoremcvgratnnlemabsle 11490* Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs ` 
 sum_ i  e.  (
 ( M  +  1 ) ... N ) ( F `  i
 ) )  <_  (
 ( abs `  ( F `  M ) )  x. 
 sum_ i  e.  (
 ( M  +  1 ) ... N ) ( A ^ (
 i  -  M ) ) ) )
 
Theoremcvgratnnlemsumlt 11491* Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 23-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^
 ( i  -  M ) )  <  ( A 
 /  ( 1  -  A ) ) )
 
Theoremcvgratnnlemfm 11492* Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 23-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  ( abs `  ( F `  M ) )  < 
 ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) ) 
 /  A )  x.  ( ( abs `  ( F `  1 ) )  +  1 ) ) 
 /  M ) )
 
Theoremcvgratnnlemrate 11493* Lemma for cvgratnn 11494. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( (  seq 1
 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )  < 
 ( ( ( ( ( 1  /  (
 ( 1  /  A )  -  1 ) ) 
 /  A )  x.  ( ( abs `  ( F `  1 ) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
 
Theoremcvgratnn 11494* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms, then the infinite sum of the terms of  F converges to a complex number. Although this theorem is similar to cvgratz 11495 and cvgratgt0 11496, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11313 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  F )  e.  dom  ~~>  )
 
Theoremcvgratz 11495* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms, then the infinite sum of the terms of  F converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremcvgratgt0 11496* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms beyond some index  B, then the infinite sum of the terms of 
F converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  W ) 
 ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
4.8.9  Mertens' theorem
 
Theoremmertenslemub 11497* Lemma for mertensabs 11500. An upper bound for  T. (Contributed by Jim Kingdon, 3-Dec-2022.)
 |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ph  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( S  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ph  ->  X  e.  T )   &    |-  ( ph  ->  S  e.  NN )   =>    |-  ( ph  ->  X  <_ 
 sum_ n  e.  (
 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) )
 
Theoremmertenslemi1 11498* Lemma for mertensabs 11500. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ps 
 <->  ( s  e.  NN  /\ 
 A. n  e.  ( ZZ>=
 `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) )  <  (
 ( E  /  2
 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )   &    |-  ( ph  ->  P  e.  RR )   &    |-  ( ph  ->  ( ps  /\  ( t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t )
 ( K `  m )  <  ( ( ( E  /  2 ) 
 /  s )  /  ( P  +  1
 ) ) ) ) )   &    |-  ( ph  ->  0 
 <_  P )   &    |-  ( ph  ->  A. w  e.  T  w  <_  P )   =>    |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>=
 `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_
 k  e.  ( ZZ>= `  ( ( m  -  j )  +  1
 ) ) B ) )  <  E )
 
Theoremmertenslem2 11499* Lemma for mertensabs 11500. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ps 
 <->  ( s  e.  NN  /\ 
 A. n  e.  ( ZZ>=
 `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) )  <  (
 ( E  /  2
 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )   =>    |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>=
 `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_
 k  e.  ( ZZ>= `  ( ( m  -  j )  +  1
 ) ) B ) )  <  E )
 
Theoremmertensabs 11500* Mertens' theorem. If  A ( j ) is an absolutely convergent series and  B ( k ) is convergent, then  ( sum_ j  e.  NN0 A ( j )  x.  sum_ k  e.  NN0 B ( k ) )  =  sum_ k  e. 
NN0 sum_ j  e.  ( 0 ... k ) ( A ( j )  x.  B ( k  -  j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  seq 0
 (  +  ,  H ) 
 ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >