HomeHome Intuitionistic Logic Explorer
Theorem List (p. 115 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11401-11500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremre0 11401 The real part of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( Re `  0
 )  =  0
 
Theoremim0 11402 The imaginary part of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( Im `  0
 )  =  0
 
Theoremre1 11403 The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Re `  1
 )  =  1
 
Theoremim1 11404 The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Im `  1
 )  =  0
 
Theoremrei 11405 The real part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Re `  _i )  =  0
 
Theoremimi 11406 The imaginary part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
 |-  ( Im `  _i )  =  1
 
Theoremcj0 11407 The conjugate of zero. (Contributed by NM, 27-Jul-1999.)
 |-  ( * `  0
 )  =  0
 
Theoremcji 11408 The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
 |-  ( * `  _i )  =  -u _i
 
Theoremcjreim 11409 The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( A  -  ( _i  x.  B ) ) )
 
Theoremcjreim2 11410 The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  -  ( _i  x.  B ) ) )  =  ( A  +  ( _i  x.  B ) ) )
 
Theoremcj11 11411 Complex conjugate is a one-to-one function. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Eric Schmidt, 2-Jul-2009.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `
  A )  =  ( * `  B ) 
 <->  A  =  B ) )
 
Theoremcjap 11412 Complex conjugate and apartness. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `
  A ) #  ( * `  B )  <->  A #  B ) )
 
Theoremcjap0 11413 A number is apart from zero iff its complex conjugate is apart from zero. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( A  e.  CC  ->  ( A #  0  <->  ( * `  A ) #  0 )
 )
 
Theoremcjne0 11414 A number is nonzero iff its complex conjugate is nonzero. Also see cjap0 11413 which is similar but for apartness. (Contributed by NM, 29-Apr-2005.)
 |-  ( A  e.  CC  ->  ( A  =/=  0  <->  ( * `  A )  =/=  0 ) )
 
Theoremcjdivap 11415 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( * `  ( A 
 /  B ) )  =  ( ( * `
  A )  /  ( * `  B ) ) )
 
Theoremcnrecnv 11416* The inverse to the canonical bijection from  ( RR  X.  RR ) to  CC from cnref1o 9842. (Contributed by Mario Carneiro, 25-Aug-2014.)
 |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  ( _i  x.  y
 ) ) )   =>    |-  `' F  =  ( z  e.  CC  |->  <.
 ( Re `  z
 ) ,  ( Im
 `  z ) >. )
 
Theoremrecli 11417 The real part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  A )  e.  RR
 
Theoremimcli 11418 The imaginary part of a complex number is real (closure law). (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( Im `  A )  e.  RR
 
Theoremcjcli 11419 Closure law for complex conjugate. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( * `  A )  e.  CC
 
Theoremreplimi 11420 Construct a complex number from its real and imaginary parts. (Contributed by NM, 1-Oct-1999.)
 |-  A  e.  CC   =>    |-  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )
 
Theoremcjcji 11421 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( * `  ( * `  A ) )  =  A
 
Theoremreim0bi 11422 A number is real iff its imaginary part is 0. (Contributed by NM, 29-May-1999.)
 |-  A  e.  CC   =>    |-  ( A  e.  RR 
 <->  ( Im `  A )  =  0 )
 
Theoremrerebi 11423 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 27-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A  e.  RR 
 <->  ( Re `  A )  =  A )
 
Theoremcjrebi 11424 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A  e.  RR 
 <->  ( * `  A )  =  A )
 
Theoremrecji 11425 Real part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  ( * `  A ) )  =  ( Re
 `  A )
 
Theoremimcji 11426 Imaginary part of a complex conjugate. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( Im `  ( * `  A ) )  =  -u ( Im `  A )
 
Theoremcjmulrcli 11427 A complex number times its conjugate is real. (Contributed by NM, 11-May-1999.)
 |-  A  e.  CC   =>    |-  ( A  x.  ( * `  A ) )  e.  RR
 
Theoremcjmulvali 11428 A complex number times its conjugate. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A  x.  ( * `  A ) )  =  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2
 ) )
 
Theoremcjmulge0i 11429 A complex number times its conjugate is nonnegative. (Contributed by NM, 28-May-1999.)
 |-  A  e.  CC   =>    |-  0  <_  ( A  x.  ( * `  A ) )
 
Theoremrenegi 11430 Real part of negative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( Re `  -u A )  =  -u ( Re `  A )
 
Theoremimnegi 11431 Imaginary part of negative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( Im `  -u A )  =  -u ( Im `  A )
 
Theoremcjnegi 11432 Complex conjugate of negative. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  CC   =>    |-  ( * `  -u A )  =  -u ( * `  A )
 
Theoremaddcji 11433 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   =>    |-  ( A  +  ( * `  A ) )  =  ( 2  x.  ( Re `  A ) )
 
Theoremreaddi 11434 Real part distributes over addition. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Re `  ( A  +  B )
 )  =  ( ( Re `  A )  +  ( Re `  B ) )
 
Theoremimaddi 11435 Imaginary part distributes over addition. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Im `  ( A  +  B )
 )  =  ( ( Im `  A )  +  ( Im `  B ) )
 
Theoremremuli 11436 Real part of a product. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Re `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  ( Im `  B ) ) )
 
Theoremimmuli 11437 Imaginary part of a product. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Im `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  ( Re `  B ) ) )
 
Theoremcjaddi 11438 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( * `  ( A  +  B )
 )  =  ( ( * `  A )  +  ( * `  B ) )
 
Theoremcjmuli 11439 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 28-Jul-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) )
 
Theoremipcni 11440 Standard inner product on complex numbers. (Contributed by NM, 2-Oct-1999.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  ( Im `  B ) ) )
 
Theoremcjdivapi 11441 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
 |-  A  e.  CC   &    |-  B  e.  CC   =>    |-  ( B #  0  ->  ( * `  ( A 
 /  B ) )  =  ( ( * `
  A )  /  ( * `  B ) ) )
 
Theoremcrrei 11442 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A
 
Theoremcrimi 11443 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B
 
Theoremrecld 11444 The real part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Re `  A )  e. 
 RR )
 
Theoremimcld 11445 The imaginary part of a complex number is real (closure law). (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Im `  A )  e. 
 RR )
 
Theoremcjcld 11446 Closure law for complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  A )  e. 
 CC )
 
Theoremreplimd 11447 Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremremimd 11448 Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  A )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
 
Theoremcjcjd 11449 The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  ( * `  A ) )  =  A )
 
Theoremreim0bd 11450 A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( Im `  A )  =  0 )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremrerebd 11451 A real number equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( Re `  A )  =  A )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremcjrebd 11452 A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( * `  A )  =  A )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremcjne0d 11453 A number which is nonzero has a complex conjugate which is nonzero. Also see cjap0d 11454 which is similar but for apartness. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A  =/=  0 )   =>    |-  ( ph  ->  ( * `  A )  =/=  0 )
 
Theoremcjap0d 11454 A number which is apart from zero has a complex conjugate which is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( * `  A ) #  0 )
 
Theoremrecjd 11455 Real part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( * `  A ) )  =  ( Re `  A ) )
 
Theoremimcjd 11456 Imaginary part of a complex conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( * `  A ) )  =  -u ( Im `  A ) )
 
Theoremcjmulrcld 11457 A complex number times its conjugate is real. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( * `  A ) )  e. 
 RR )
 
Theoremcjmulvald 11458 A complex number times its conjugate. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  x.  ( * `  A ) )  =  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) )
 
Theoremcjmulge0d 11459 A complex number times its conjugate is nonnegative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  0  <_  ( A  x.  ( * `  A ) ) )
 
Theoremrenegd 11460 Real part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Re `  -u A )  =  -u ( Re `  A ) )
 
Theoremimnegd 11461 Imaginary part of negative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( Im `  -u A )  =  -u ( Im `  A ) )
 
Theoremcjnegd 11462 Complex conjugate of negative. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( * `  -u A )  =  -u ( * `  A ) )
 
Theoremaddcjd 11463 A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( A  +  ( * `  A ) )  =  ( 2  x.  ( Re `  A ) ) )
 
Theoremcjexpd 11464 Complex conjugate of positive integer exponentiation. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( * `  ( A ^ N ) )  =  ( ( * `  A ) ^ N ) )
 
Theoremreaddd 11465 Real part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  +  B ) )  =  ( ( Re
 `  A )  +  ( Re `  B ) ) )
 
Theoremimaddd 11466 Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  +  B ) )  =  ( ( Im
 `  A )  +  ( Im `  B ) ) )
 
Theoremresubd 11467 Real part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  -  B ) )  =  ( ( Re
 `  A )  -  ( Re `  B ) ) )
 
Theoremimsubd 11468 Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  -  B ) )  =  ( ( Im
 `  A )  -  ( Im `  B ) ) )
 
Theoremremuld 11469 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremimmuld 11470 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  x.  B ) )  =  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )
 
Theoremcjaddd 11471 Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  ( A  +  B ) )  =  ( ( * `
  A )  +  ( * `  B ) ) )
 
Theoremcjmuld 11472 Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  ( A  x.  B ) )  =  ( ( * `
  A )  x.  ( * `  B ) ) )
 
Theoremipcnd 11473 Standard inner product on complex numbers. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
 
Theoremcjdivapd 11474 Complex conjugate distributes over division. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( * `  ( A  /  B ) )  =  ( ( * `  A ) 
 /  ( * `  B ) ) )
 
Theoremrered 11475 A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( Re `  A )  =  A )
 
Theoremreim0d 11476 The imaginary part of a real number is 0. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( Im `  A )  =  0 )
 
Theoremcjred 11477 A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( * `  A )  =  A )
 
Theoremremul2d 11478 Real part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  ( A  x.  B ) )  =  ( A  x.  ( Re `  B ) ) )
 
Theoremimmul2d 11479 Imaginary part of a product. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  ( A  x.  B ) )  =  ( A  x.  ( Im `  B ) ) )
 
Theoremredivapd 11480 Real part of a division. Related to remul2 11379. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( Re `  ( B  /  A ) )  =  ( ( Re `  B ) 
 /  A ) )
 
Theoremimdivapd 11481 Imaginary part of a division. Related to remul2 11379. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( Im `  ( B  /  A ) )  =  ( ( Im `  B ) 
 /  A ) )
 
Theoremcrred 11482 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
 
Theoremcrimd 11483 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
 
Theoremcnreim 11484 Complex apartness in terms of real and imaginary parts. See also apreim 8746 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( ( Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
 
4.8.3  Sequence convergence
 
Theoremcaucvgrelemrec 11485* Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  ( iota_ r  e.  RR  ( A  x.  r
 )  =  1 )  =  ( 1  /  A ) )
 
Theoremcaucvgrelemcau 11486* Lemma for caucvgre 11487. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
  k )  +  ( 1  /  n ) )  /\  ( F `
  k )  < 
 ( ( F `  n )  +  (
 1  /  n )
 ) ) )   =>    |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )
 
Theoremcaucvgre 11487* Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within  1  /  n of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
  k )  +  ( 1  /  n ) )  /\  ( F `
  k )  < 
 ( ( F `  n )  +  (
 1  /  n )
 ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `
  i )  +  x ) ) )
 
Theoremcvg1nlemcxze 11488 Lemma for cvg1n 11492. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
 |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  X  e.  RR+ )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  E  e.  NN )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A )  <  E )   =>    |-  ( ph  ->  ( C  /  ( E  x.  Z ) )  < 
 ( X  /  2
 ) )
 
Theoremcvg1nlemf 11489* Lemma for cvg1n 11492. The modified sequence  G is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  G : NN --> RR )
 
Theoremcvg1nlemcau 11490* Lemma for cvg1n 11492. By selecting spaced out terms for the modified sequence  G, the terms are within  1  /  n (without the constant  C). (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( G `  n )  <  ( ( G `  k )  +  ( 1  /  n ) )  /\  ( G `  k )  <  ( ( G `
  n )  +  ( 1  /  n ) ) ) )
 
Theoremcvg1nlemres 11491* Lemma for cvg1n 11492. The original sequence  F has a limit (turns out it is the same as the limit of the modified sequence  G). (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremcvg1n 11492* Convergence of real sequences.

This is a version of caucvgre 11487 with a constant multiplier  C on the rate of convergence. That is, all terms after the nth term must be within  C  /  n of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremuzin2 11493 The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
 |-  ( ( A  e.  ran  ZZ>= 
 /\  B  e.  ran  ZZ>= )  ->  ( A  i^i  B )  e.  ran  ZZ>= )
 
Theoremrexanuz 11494* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
 |-  ( E. j  e. 
 ZZ  A. k  e.  ( ZZ>=
 `  j ) (
 ph  /\  ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
 
Theoremrexfiuz 11495* Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
 )
 
Theoremrexuz3 11496* Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph 
 <-> 
 E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
 )
 
Theoremrexanuz2 11497* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ph  /\  ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps ) )
 
Theoremr19.29uz 11498* A version of 19.29 1666 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( A. k  e.  Z  ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ph  /\  ps )
 )
 
Theoremr19.2uz 11499* A version of r19.2m 3578 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
 
Theoremrecvguniqlem 11500 Lemma for recvguniq 11501. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  A  <  (
 ( F `  K )  +  ( ( A  -  B )  / 
 2 ) ) )   &    |-  ( ph  ->  ( F `  K )  <  ( B  +  ( ( A  -  B )  / 
 2 ) ) )   =>    |-  ( ph  -> F.  )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >