HomeHome Intuitionistic Logic Explorer
Theorem List (p. 115 of 157)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11401-11500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxrmaxrecl 11401 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
 
Theoremxrmaxleastlt 11402 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  C  <  sup ( { A ,  B } ,  RR* ,  <  ) ) )  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremxrltmaxsup 11403 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( C  <  sup ( { A ,  B } ,  RR* ,  <  )  <->  ( C  <  A  \/  C  <  B ) ) )
 
Theoremxrmaxltsup 11404 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
Theoremxrmaxlesup 11405 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  ) 
 <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
Theoremxrmaxaddlem 11406 Lemma for xrmaxadd 11407. The case where  A is real. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR*
 ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremxrmaxadd 11407 Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
4.8.8  The minimum of two extended reals
 
Theoremxrnegiso 11408 Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  F  =  ( x  e.  RR*  |->  -e
 x )   =>    |-  ( F  Isom  <  ,  `'  <  ( RR* ,  RR* )  /\  `' F  =  F )
 
Theoreminfxrnegsupex 11409* The infimum of a set of extended reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )   &    |-  ( ph  ->  A 
 C_  RR* )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e z  e.  A } ,  RR* ,  <  ) )
 
Theoremxrnegcon1d 11410 Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )
 
Theoremxrminmax 11411 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
 
Theoremxrmincl 11412 The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
Theoremxrmin1inf 11413 The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  A )
 
Theoremxrmin2inf 11414 The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  B )
 
Theoremxrmineqinf 11415 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  B )
 
Theoremxrltmininf 11416 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B 
 /\  A  <  C ) ) )
 
Theoremxrlemininf 11417 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <_  B 
 /\  A  <_  C ) ) )
 
Theoremxrminltinf 11418 Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  ( B  <  A  \/  C  <  A ) ) )
 
Theoremxrminrecl 11419 The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR* ,  <  )  = inf ( { A ,  B } ,  RR ,  <  )
 )
 
Theoremxrminrpcl 11420 The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
 
Theoremxrminadd 11421 Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  -> inf ( {
 ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremxrbdtri 11422 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  ) 
 <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremiooinsup 11423 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A (,) B )  i^i  ( C (,) D ) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
 ) )
 
4.9  Elementary limits and convergence
 
4.9.1  Limits
 
Syntaxcli 11424 Extend class notation with convergence relation for limits.
 class  ~~>
 
Definitiondf-clim 11425* Define the limit relation for complex number sequences. See clim 11427 for its relational expression. (Contributed by NM, 28-Aug-2005.)
 |-  ~~>  =  { <. f ,  y >.  |  ( y  e. 
 CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( f `  k )  e.  CC  /\  ( abs `  ( ( f `
  k )  -  y ) )  < 
 x ) ) }
 
Theoremclimrel 11426 The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |- 
 Rel 
 ~~>
 
Theoremclim 11427* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer 
j such that the absolute difference of any later complex number in the sequence and the limit is less than  x. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  ZZ )  ->  ( F `  k
 )  =  B )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  ( A  e.  CC  /\ 
 A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclimcl 11428 Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  ~~>  A  ->  A  e.  CC )
 
Theoremclim2 11429* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A, with more general quantifier restrictions than clim 11427. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclim2c 11430* Express the predicate  F converges to  A. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( B  -  A ) )  <  x ) )
 
Theoremclim0 11431* Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   =>    |-  ( ph  ->  ( F 
 ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  B )  < 
 x ) ) )
 
Theoremclim0c 11432* Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  B )  <  x ) )
 
Theoremclimi 11433* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
 
Theoremclimi2 11434* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  ( B  -  A ) )  <  C )
 
Theoremclimi0 11435* Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  0 )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  B )  <  C )
 
Theoremclimconst 11436* An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  A )   =>    |-  ( ph  ->  F  ~~>  A )
 
Theoremclimconst2 11437 A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ZZ>= `  M )  C_  Z   &    |-  Z  e.  _V   =>    |-  (
 ( A  e.  CC  /\  M  e.  ZZ )  ->  ( Z  X.  { A } )  ~~>  A )
 
Theoremclimz 11438 The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ZZ  X.  {
 0 } )  ~~>  0
 
Theoremclimuni 11439 An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( F  ~~>  A  /\  F 
 ~~>  B )  ->  A  =  B )
 
Theoremfclim 11440 The limit relation is function-like, and with codomian the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ~~>  : dom  ~~>  --> CC
 
Theoremclimdm 11441 Two ways to express that a function has a limit. (The expression  (  ~~>  `  F
) is sometimes useful as a shorthand for "the unique limit of the function  F"). (Contributed by Mario Carneiro, 18-Mar-2014.)
 |-  ( F  e.  dom  ~~>  <->  F  ~~>  ( 
 ~~>  `  F ) )
 
Theoremclimeu 11442* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
 |-  ( F  ~~>  A  ->  E! x  F  ~~>  x )
 
Theoremclimreu 11443* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
 |-  ( F  ~~>  A  ->  E! x  e.  CC  F  ~~>  x )
 
Theoremclimmo 11444* An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013.)
 |- 
 E* x  F  ~~>  x
 
Theoremclimeq 11445* Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  ( G `
  k ) )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  G  ~~>  A ) )
 
Theoremclimmpt 11446* Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  G  =  ( k  e.  Z  |->  ( F `  k ) )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
 
Theorem2clim 11447* If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  x )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclimshftlemg 11448 A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  ->  ( F  shift  M )  ~~>  A )
 )
 
Theoremclimres 11449 A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  |`  ( ZZ>= `  M )
 )  ~~>  A  <->  F  ~~>  A ) )
 
Theoremclimshft 11450 A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F 
 shift  M )  ~~>  A  <->  F  ~~>  A ) )
 
Theoremserclim0 11451 The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  ( M  e.  ZZ  ->  seq M (  +  ,  ( ( ZZ>= `  M )  X.  { 0 } ) )  ~~>  0 )
 
Theoremclimshft2 11452* A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
 ) )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  G  ~~>  A ) )
 
Theoremclimabs0 11453* Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k ) ) )   =>    |-  ( ph  ->  ( F 
 ~~>  0  <->  G  ~~>  0 ) )
 
Theoremclimcn1 11454* Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  z  e.  B )  ->  ( F `  z )  e. 
 CC )   &    |-  ( ph  ->  G  ~~>  A )   &    |-  ( ph  ->  H  e.  W )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( F `  A ) )
 
Theoremclimcn2 11455* Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ( ph  /\  ( u  e.  C  /\  v  e.  D ) )  ->  ( u F v )  e. 
 CC )   &    |-  ( ph  ->  G  ~~>  A )   &    |-  ( ph  ->  H  ~~>  B )   &    |-  ( ph  ->  K  e.  W )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
 z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  C )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  e.  D )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( K `  k
 )  =  ( ( G `  k ) F ( H `  k ) ) )   =>    |-  ( ph  ->  K  ~~>  ( A F B ) )
 
Theoremaddcn2 11456* Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 14741 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  +  v
 )  -  ( B  +  C ) ) )  <  A ) )
 
Theoremsubcn2 11457* Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  -  v
 )  -  ( B  -  C ) ) )  <  A ) )
 
Theoremmulcn2 11458* Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  x.  v
 )  -  ( B  x.  C ) ) )  <  A ) )
 
Theoremreccn2ap 11459* The reciprocal function is continuous. The class  T is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2193. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
 |-  T  =  (inf ( { 1 ,  (
 ( abs `  A )  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )   =>    |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  { w  e.  CC  |  w #  0 }  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( (
 1  /  z )  -  ( 1  /  A ) ) )  <  B ) )
 
Theoremcn1lem 11460* A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  F : CC --> CC   &    |-  (
 ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
 ( F `  z
 )  -  ( F `
  A ) ) )  <_  ( abs `  ( z  -  A ) ) )   =>    |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <  x ) )
 
Theoremabscn2 11461* The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( abs `  z
 )  -  ( abs `  A ) ) )  <  x ) )
 
Theoremcjcn2 11462* The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( * `  z )  -  ( * `  A ) ) )  <  x ) )
 
Theoremrecn2 11463* The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( Re `  z )  -  ( Re `  A ) ) )  <  x ) )
 
Theoremimcn2 11464* The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( Im `  z )  -  ( Im `  A ) ) )  <  x ) )
 
Theoremclimcn1lem 11465* The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  H : CC --> CC   &    |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( H `  z )  -  ( H `  A ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( H `
  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( H `  A ) )
 
Theoremclimabs 11466* Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( abs `  ( F `  k
 ) ) )   =>    |-  ( ph  ->  G  ~~>  ( abs `  A )
 )
 
Theoremclimcj 11467* Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( * `
  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( * `  A ) )
 
Theoremclimre 11468* Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( Re
 `  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( Re `  A ) )
 
Theoremclimim 11469* Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  =  ( Im
 `  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( Im `  A ) )
 
Theoremclimrecl 11470* The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremclimge0 11471* A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremclimadd 11472* Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  +  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  +  B ) )
 
Theoremclimmul 11473* Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  x.  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  x.  B ) )
 
Theoremclimsub 11474* Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  H  e.  X )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( H `  k
 )  =  ( ( F `  k )  -  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( A  -  B ) )
 
Theoremclimaddc1 11475* Limit of a constant  C added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `  k )  +  C ) )   =>    |-  ( ph  ->  G  ~~>  ( A  +  C ) )
 
Theoremclimaddc2 11476* Limit of a constant  C added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  +  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  +  A ) )
 
Theoremclimmulc2 11477* Limit of a sequence multiplied by a constant  C. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  x.  A ) )
 
Theoremclimsubc1 11478* Limit of a constant  C subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( ( F `  k )  -  C ) )   =>    |-  ( ph  ->  G  ~~>  ( A  -  C ) )
 
Theoremclimsubc2 11479* Limit of a constant  C minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  -  ( F `  k ) ) )   =>    |-  ( ph  ->  G  ~~>  ( C  -  A ) )
 
Theoremclimle 11480* Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremclimsqz 11481* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  <_  A )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclimsqz2 11482* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  <_  ( G `  k ) )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclim2ser 11483* The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq ( N  +  1 ) (  +  ,  F )  ~~>  ( A  -  (  seq M (  +  ,  F ) `  N ) ) )
 
Theoremclim2ser2 11484* The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq ( N  +  1 ) (  +  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  ( A  +  (  seq M (  +  ,  F ) `  N ) ) )
 
Theoremiserex 11485* An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq N (  +  ,  F )  e.  dom  ~~>  ) )
 
Theoremisermulc2 11486* Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( C  x.  ( F `  k ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  G ) 
 ~~>  ( C  x.  A ) )
 
Theoremclimlec2 11487* Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  F  ~~>  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  <_  ( F `  k
 ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremiserle 11488* Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  ( ph  ->  seq M (  +  ,  G )  ~~>  B )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k ) )   =>    |-  ( ph  ->  A  <_  B )
 
Theoremiserge0 11489* The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremclimub 11490* The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  F  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  <_  ( F `  ( k  +  1 ) ) )   =>    |-  ( ph  ->  ( F `  N ) 
 <_  A )
 
Theoremclimserle 11491* The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  ( F `
  k ) )   =>    |-  ( ph  ->  (  seq M (  +  ,  F ) `  N )  <_  A )
 
Theoremiser3shft 11492* Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  x  e.  ( ZZ>= `  M )
 )  ->  ( F `  x )  e.  S )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S )
 )  ->  ( x  .+  y )  e.  S )   =>    |-  ( ph  ->  (  seq M (  .+  ,  F )  ~~>  A  <->  seq ( M  +  N ) (  .+  ,  ( F  shift  N ) )  ~~>  A ) )
 
Theoremclimcau 11493* A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 11496). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  ) 
 ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
 
Theoremclimrecvg1n 11494* A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcvg1nlem 11495* Lemma for climcvg1n 11496. We construct sequences of the real and imaginary parts of each term of  F, show those converge, and use that to show that  F converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
 |-  ( ph  ->  F : NN --> CC )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   &    |-  G  =  ( x  e.  NN  |->  ( Re `  ( F `  x ) ) )   &    |-  H  =  ( x  e.  NN  |->  ( Im `  ( F `
  x ) ) )   &    |-  J  =  ( x  e.  NN  |->  ( _i  x.  ( H `
  x ) ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcvg1n 11496* A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
 |-  ( ph  ->  F : NN --> CC )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( abs `  ( ( F `  k )  -  ( F `  n ) ) )  <  ( C  /  n ) )   =>    |-  ( ph  ->  F  e.  dom  ~~>  )
 
Theoremclimcaucn 11497* A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 11493 but adds the part that  ( F `  k ) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  ) 
 ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
  k )  -  ( F `  j ) ) )  <  x ) )
 
Theoremserf0 11498* If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  F  ~~>  0 )
 
4.9.2  Finite and infinite sums
 
Syntaxcsu 11499 Extend class notation to include finite summations. (An underscore was added to the ASCII token in order to facilitate set.mm text searches, since "sum" is a commonly used word in comments.)
 class  sum_ k  e.  A  B
 
Definitiondf-sumdc 11500* Define the sum of a series with an index set of integers  A. The variable  k is normally a free variable in  B, i.e.,  B can be thought of as  B ( k ). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an  if expression so that we only need  B to be defined where  k  e.  A. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples:  sum_ k  e. 
{ 1 ,  2 ,  4 } k means  1  +  2  +  4  =  7, and  sum_ k  e.  NN ( 1  / 
( 2 ^ k
) )  =  1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 11668). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
 |- 
 sum_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>=
 `  m )DECID  j  e.  A  /\  seq m (  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
 ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  x  =  ( 
 seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15644
  Copyright terms: Public domain < Previous  Next >