HomeHome Intuitionistic Logic Explorer
Theorem List (p. 115 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11401-11500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmax0addsup 11401 The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
 |-  ( A  e.  RR  ->  ( sup ( { A ,  0 } ,  RR ,  <  )  +  sup ( { -u A ,  0 } ,  RR ,  <  ) )  =  ( abs `  A ) )
 
Theoremrexanre 11402* Combine two different upper real properties into one. (Contributed by Mario Carneiro, 8-May-2016.)
 |-  ( A  C_  RR  ->  ( E. j  e. 
 RR  A. k  e.  A  ( j  <_  k  ->  ( ph  /\  ps )
 ) 
 <->  ( E. j  e. 
 RR  A. k  e.  A  ( j  <_  k  ->  ph )  /\  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ps ) ) ) )
 
Theoremrexico 11403* Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
 |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
 
Theoremmaxclpr 11404 The maximum of two real numbers is one of those numbers if and only if dichotomy ( A  <_  B  \/  B  <_  A) holds. For example, this can be combined with zletric 9387 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 1-Feb-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B } 
 <->  ( A  <_  B  \/  B  <_  A )
 ) )
 
Theoremrpmaxcl 11405 The maximum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 10-Nov-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
Theoremzmaxcl 11406 The maximum of two integers is an integer. (Contributed by Jim Kingdon, 27-Sep-2022.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  ZZ )
 
Theoremnn0maxcl 11407 The maximum of two nonnegative integers is a nonnegative integer. (Contributed by Jim Kingdon, 28-Oct-2025.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  NN0 )
 
Theorem2zsupmax 11408 Two ways to express the maximum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 22-Jan-2023.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  sup ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  B ,  A )
 )
 
Theoremfimaxre2 11409* A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
 |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y 
 <_  x )
 
Theoremnegfi 11410* The negation of a finite set of real numbers is finite. (Contributed by AV, 9-Aug-2020.)
 |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  { n  e. 
 RR  |  -u n  e.  A }  e.  Fin )
 
4.8.6  The minimum of two real numbers
 
Theoremmincom 11411 The minimum of two reals is commutative. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |- inf
 ( { A ,  B } ,  RR ,  <  )  = inf ( { B ,  A } ,  RR ,  <  )
 
Theoremminmax 11412 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  -u sup ( { -u A ,  -u B } ,  RR ,  <  ) )
 
Theoremmincl 11413 The minumum of two real numbers is a real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR )
 
Theoremmin1inf 11414 The minimum of two numbers is less than or equal to the first. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  <_  A )
 
Theoremmin2inf 11415 The minimum of two numbers is less than or equal to the second. (Contributed by Jim Kingdon, 9-Feb-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  <_  B )
 
Theoremlemininf 11416 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_ inf ( { B ,  C } ,  RR ,  <  )  <->  ( A  <_  B  /\  A  <_  C ) ) )
 
Theoremltmininf 11417 Two ways of saying a number is less than the minimum of two others. (Contributed by Jim Kingdon, 10-Feb-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  < inf ( { B ,  C } ,  RR ,  <  )  <->  ( A  <  B  /\  A  <  C ) ) )
 
Theoremminabs 11418 The minimum of two real numbers in terms of absolute value. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR ,  <  )  =  ( ( ( A  +  B )  -  ( abs `  ( A  -  B ) ) ) 
 /  2 ) )
 
Theoremminclpr 11419 The minimum of two real numbers is one of those numbers if and only if dichotomy ( A  <_  B  \/  B  <_  A) holds. For example, this can be combined with zletric 9387 if one is dealing with integers, but real number dichotomy in general does not follow from our axioms. (Contributed by Jim Kingdon, 23-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  (inf ( { A ,  B } ,  RR ,  <  )  e.  { A ,  B } 
 <->  ( A  <_  B  \/  B  <_  A )
 ) )
 
Theoremrpmincl 11420 The minumum of two positive real numbers is a positive real number. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR ,  <  )  e.  RR+ )
 
Theorembdtrilem 11421 Lemma for bdtri 11422. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  (
 ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C ) ) ) 
 <_  ( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) )
 
Theorembdtri 11422 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( {
 ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
 ) )
 
Theoremmul0inf 11423 Equality of a product with zero. A bit of a curiosity, in the sense that theorems like abs00ap 11244 and mulap0bd 8701 may better express the ideas behind it. (Contributed by Jim Kingdon, 31-Jul-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  =  0  <-> inf ( { ( abs `  A ) ,  ( abs `  B ) } ,  RR ,  <  )  =  0 ) )
 
Theoremmingeb 11424 Equivalence of  <_ and being equal to the minimum of two reals. (Contributed by Jim Kingdon, 14-Oct-2024.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <-> inf ( { A ,  B } ,  RR ,  <  )  =  A ) )
 
Theorem2zinfmin 11425 Two ways to express the minimum of two integers. Because order of integers is decidable, we have more flexibility than for real numbers. (Contributed by Jim Kingdon, 14-Oct-2024.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> inf ( { A ,  B } ,  RR ,  <  )  =  if ( A  <_  B ,  A ,  B )
 )
 
4.8.7  The maximum of two extended reals
 
Theoremxrmaxleim 11426 Value of maximum when we know which extended real is larger. (Contributed by Jim Kingdon, 25-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
 
Theoremxrmaxiflemcl 11427 Lemma for xrmaxif 11433. Closure. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  e.  RR* )
 
Theoremxrmaxifle 11428 An upper bound for  { A ,  B } in the extended reals. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )
 
Theoremxrmaxiflemab 11429 Lemma for xrmaxif 11433. A variation of xrmaxleim 11426- that is, if we know which of two real numbers is larger, we know the maximum of the two. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
 ) ) ) )  =  B )
 
Theoremxrmaxiflemlub 11430 Lemma for xrmaxif 11433. A least upper bound for  { A ,  B }. (Contributed by Jim Kingdon, 28-Apr-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  C  <  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) ) )   =>    |-  ( ph  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremxrmaxiflemcom 11431 Lemma for xrmaxif 11433. Commutativity of an expression which we will later show to be the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )  =  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  sup ( { B ,  A } ,  RR ,  <  ) ) ) ) ) )
 
Theoremxrmaxiflemval 11432* Lemma for xrmaxif 11433. Value of the supremum. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  M  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  ) ) ) ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( M  e.  RR*  /\ 
 A. x  e.  { A ,  B }  -.  M  <  x  /\  A. x  e.  RR*  ( x  <  M  ->  E. z  e.  { A ,  B } x  <  z ) ) )
 
Theoremxrmaxif 11433 Maximum of two extended reals in terms of  if expressions. (Contributed by Jim Kingdon, 26-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  if ( B  = +oo , +oo ,  if ( B  = -oo ,  A ,  if ( A  = +oo , +oo ,  if ( A  = -oo ,  B ,  sup ( { A ,  B } ,  RR ,  <  )
 ) ) ) ) )
 
Theoremxrmaxcl 11434 The maximum of two extended reals is an extended real. (Contributed by Jim Kingdon, 29-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
Theoremxrmax1sup 11435 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  )
 )
 
Theoremxrmax2sup 11436 An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  )
 )
 
Theoremxrmaxrecl 11437 The maximum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
 
Theoremxrmaxleastlt 11438 The maximum as a least upper bound, in terms of less than. (Contributed by Jim Kingdon, 9-Feb-2022.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  C  <  sup ( { A ,  B } ,  RR* ,  <  ) ) )  ->  ( C  <  A  \/  C  <  B ) )
 
Theoremxrltmaxsup 11439 The maximum as a least upper bound. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( C  <  sup ( { A ,  B } ,  RR* ,  <  )  <->  ( C  <  A  \/  C  <  B ) ) )
 
Theoremxrmaxltsup 11440 Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C 
 /\  B  <  C ) ) )
 
Theoremxrmaxlesup 11441 Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  ) 
 <_  C  <->  ( A  <_  C 
 /\  B  <_  C ) ) )
 
Theoremxrmaxaddlem 11442 Lemma for xrmaxadd 11443. The case where  A is real. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR*
 ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremxrmaxadd 11443 Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
 
4.8.8  The minimum of two extended reals
 
Theoremxrnegiso 11444 Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  F  =  ( x  e.  RR*  |->  -e
 x )   =>    |-  ( F  Isom  <  ,  `'  <  ( RR* ,  RR* )  /\  `' F  =  F )
 
Theoreminfxrnegsupex 11445* The infimum of a set of extended reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  < 
 x  /\  A. y  e.  RR*  ( x  <  y  ->  E. z  e.  A  z  <  y ) ) )   &    |-  ( ph  ->  A 
 C_  RR* )   =>    |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e z  e.  A } ,  RR* ,  <  ) )
 
Theoremxrnegcon1d 11446 Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )
 
Theoremxrminmax 11447 Minimum expressed in terms of maximum. (Contributed by Jim Kingdon, 2-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  -e sup ( {  -e A ,  -e B } ,  RR* ,  <  ) )
 
Theoremxrmincl 11448 The minumum of two extended reals is an extended real. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
 
Theoremxrmin1inf 11449 The minimum of two extended reals is less than or equal to the first. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  A )
 
Theoremxrmin2inf 11450 The minimum of two extended reals is less than or equal to the second. (Contributed by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> inf ( { A ,  B } ,  RR* ,  <  ) 
 <_  B )
 
Theoremxrmineqinf 11451 The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  B  <_  A )  -> inf ( { A ,  B } ,  RR* ,  <  )  =  B )
 
Theoremxrltmininf 11452 Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 3-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  < inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <  B 
 /\  A  <  C ) ) )
 
Theoremxrlemininf 11453 Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by Mario Carneiro, 18-Jun-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  <_ inf ( { B ,  C } ,  RR* ,  <  )  <->  ( A  <_  B 
 /\  A  <_  C ) ) )
 
Theoremxrminltinf 11454 Two ways of saying an extended real is greater than the minimum of two others. (Contributed by Jim Kingdon, 19-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (inf ( { B ,  C } ,  RR* ,  <  )  <  A  <->  ( B  <  A  \/  C  <  A ) ) )
 
Theoremxrminrecl 11455 The minimum of two real numbers is the same when taken as extended reals or as reals. (Contributed by Jim Kingdon, 18-May-2023.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  -> inf ( { A ,  B } ,  RR* ,  <  )  = inf ( { A ,  B } ,  RR ,  <  )
 )
 
Theoremxrminrpcl 11456 The minimum of two positive reals is a positive real. (Contributed by Jim Kingdon, 4-May-2023.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  -> inf ( { A ,  B } ,  RR* ,  <  )  e.  RR+ )
 
Theoremxrminadd 11457 Distributing addition over minimum. (Contributed by Jim Kingdon, 10-May-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  -> inf ( {
 ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremxrbdtri 11458 Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  0  <_  A )  /\  ( B  e.  RR*  /\  0  <_  B )  /\  ( C  e.  RR*  /\  0  <  C ) )  -> inf ( { ( A +e B ) ,  C } ,  RR* ,  <  ) 
 <_  (inf ( { A ,  C } ,  RR* ,  <  ) +einf ( { B ,  C } ,  RR* ,  <  ) ) )
 
Theoremiooinsup 11459 Intersection of two open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Jim Kingdon, 22-May-2023.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A (,) B )  i^i  ( C (,) D ) )  =  ( sup ( { A ,  C } ,  RR* ,  <  ) (,)inf ( { B ,  D } ,  RR* ,  <  )
 ) )
 
4.9  Elementary limits and convergence
 
4.9.1  Limits
 
Syntaxcli 11460 Extend class notation with convergence relation for limits.
 class  ~~>
 
Definitiondf-clim 11461* Define the limit relation for complex number sequences. See clim 11463 for its relational expression. (Contributed by NM, 28-Aug-2005.)
 |-  ~~>  =  { <. f ,  y >.  |  ( y  e. 
 CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( f `  k )  e.  CC  /\  ( abs `  ( ( f `
  k )  -  y ) )  < 
 x ) ) }
 
Theoremclimrel 11462 The limit relation is a relation. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |- 
 Rel 
 ~~>
 
Theoremclim 11463* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer 
j such that the absolute difference of any later complex number in the sequence and the limit is less than  x. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  ZZ )  ->  ( F `  k
 )  =  B )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  ( A  e.  CC  /\ 
 A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclimcl 11464 Closure of the limit of a sequence of complex numbers. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( F  ~~>  A  ->  A  e.  CC )
 
Theoremclim2 11465* Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A, with more general quantifier restrictions than clim 11463. (Contributed by NM, 6-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
 x ) ) ) )
 
Theoremclim2c 11466* Express the predicate  F converges to  A. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( B  -  A ) )  <  x ) )
 
Theoremclim0 11467* Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   =>    |-  ( ph  ->  ( F 
 ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  B )  < 
 x ) ) )
 
Theoremclim0c 11468* Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  B )  <  x ) )
 
Theoremclimi 11469* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  C ) )
 
Theoremclimi2 11470* Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  ( B  -  A ) )  <  C )
 
Theoremclimi0 11471* Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ph  ->  F  ~~>  0 )   =>    |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  B )  <  C )
 
Theoremclimconst 11472* An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  A )   =>    |-  ( ph  ->  F  ~~>  A )
 
Theoremclimconst2 11473 A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ZZ>= `  M )  C_  Z   &    |-  Z  e.  _V   =>    |-  (
 ( A  e.  CC  /\  M  e.  ZZ )  ->  ( Z  X.  { A } )  ~~>  A )
 
Theoremclimz 11474 The zero sequence converges to zero. (Contributed by NM, 2-Oct-1999.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ZZ  X.  {
 0 } )  ~~>  0
 
Theoremclimuni 11475 An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( F  ~~>  A  /\  F 
 ~~>  B )  ->  A  =  B )
 
Theoremfclim 11476 The limit relation is function-like, and with codomian the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ~~>  : dom  ~~>  --> CC
 
Theoremclimdm 11477 Two ways to express that a function has a limit. (The expression  (  ~~>  `  F
) is sometimes useful as a shorthand for "the unique limit of the function  F"). (Contributed by Mario Carneiro, 18-Mar-2014.)
 |-  ( F  e.  dom  ~~>  <->  F  ~~>  ( 
 ~~>  `  F ) )
 
Theoremclimeu 11478* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
 |-  ( F  ~~>  A  ->  E! x  F  ~~>  x )
 
Theoremclimreu 11479* An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005.)
 |-  ( F  ~~>  A  ->  E! x  e.  CC  F  ~~>  x )
 
Theoremclimmo 11480* An infinite sequence of complex numbers converges to at most one limit. (Contributed by Mario Carneiro, 13-Jul-2013.)
 |- 
 E* x  F  ~~>  x
 
Theoremclimeq 11481* Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  ( G `
  k ) )   =>    |-  ( ph  ->  ( F  ~~>  A 
 <->  G  ~~>  A ) )
 
Theoremclimmpt 11482* Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  G  =  ( k  e.  Z  |->  ( F `  k ) )   =>    |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
 
Theorem2clim 11483* If two sequences converge to each other, they converge to the same limit. (Contributed by NM, 24-Dec-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  G  e.  V )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( G `  k )  e. 
 CC )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( abs `  ( ( F `  k )  -  ( G `  k ) ) )  <  x )   &    |-  ( ph  ->  F  ~~>  A )   =>    |-  ( ph  ->  G  ~~>  A )
 
Theoremclimshftlemg 11484 A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  ->  ( F  shift  M )  ~~>  A )
 )
 
Theoremclimres 11485 A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F  |`  ( ZZ>= `  M )
 )  ~~>  A  <->  F  ~~>  A ) )
 
Theoremclimshft 11486 A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( ( F 
 shift  M )  ~~>  A  <->  F  ~~>  A ) )
 
Theoremserclim0 11487 The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 |-  ( M  e.  ZZ  ->  seq M (  +  ,  ( ( ZZ>= `  M )  X.  { 0 } ) )  ~~>  0 )
 
Theoremclimshft2 11488* A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  e.  X )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
 ) )   =>    |-  ( ph  ->  ( F 
 ~~>  A  <->  G  ~~>  A ) )
 
Theoremclimabs0 11489* Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  G  e.  W )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( abs `  ( F `  k ) ) )   =>    |-  ( ph  ->  ( F 
 ~~>  0  <->  G  ~~>  0 ) )
 
Theoremclimcn1 11490* Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  z  e.  B )  ->  ( F `  z )  e. 
 CC )   &    |-  ( ph  ->  G  ~~>  A )   &    |-  ( ph  ->  H  e.  W )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  B  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )   =>    |-  ( ph  ->  H  ~~>  ( F `  A ) )
 
Theoremclimcn2 11491* Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   &    |-  ( ( ph  /\  ( u  e.  C  /\  v  e.  D ) )  ->  ( u F v )  e. 
 CC )   &    |-  ( ph  ->  G  ~~>  A )   &    |-  ( ph  ->  H  ~~>  B )   &    |-  ( ph  ->  K  e.  W )   &    |-  (
 ( ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  C  A. v  e.  D  ( ( ( abs `  ( u  -  A ) )  <  y  /\  ( abs `  ( v  -  B ) )  < 
 z )  ->  ( abs `  ( ( u F v )  -  ( A F B ) ) )  <  x ) )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( G `  k
 )  e.  C )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( H `  k )  e.  D )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( K `  k
 )  =  ( ( G `  k ) F ( H `  k ) ) )   =>    |-  ( ph  ->  K  ~~>  ( A F B ) )
 
Theoremaddcn2 11492* Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 14882 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  +  v
 )  -  ( B  +  C ) ) )  <  A ) )
 
Theoremsubcn2 11493* Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  -  v
 )  -  ( B  -  C ) ) )  <  A ) )
 
Theoremmulcn2 11494* Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e. 
 CC  ( ( ( abs `  ( u  -  B ) )  < 
 y  /\  ( abs `  ( v  -  C ) )  <  z ) 
 ->  ( abs `  (
 ( u  x.  v
 )  -  ( B  x.  C ) ) )  <  A ) )
 
Theoremreccn2ap 11495* The reciprocal function is continuous. The class  T is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2196. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
 |-  T  =  (inf ( { 1 ,  (
 ( abs `  A )  x.  B ) } ,  RR ,  <  )  x.  ( ( abs `  A )  /  2 ) )   =>    |-  ( ( A  e.  CC  /\  A #  0  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  { w  e.  CC  |  w #  0 }  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( (
 1  /  z )  -  ( 1  /  A ) ) )  <  B ) )
 
Theoremcn1lem 11496* A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  F : CC --> CC   &    |-  (
 ( z  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
 ( F `  z
 )  -  ( F `
  A ) ) )  <_  ( abs `  ( z  -  A ) ) )   =>    |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  ( ( abs `  (
 z  -  A ) )  <  y  ->  ( abs `  ( ( F `  z )  -  ( F `  A ) ) )  <  x ) )
 
Theoremabscn2 11497* The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( abs `  z
 )  -  ( abs `  A ) ) )  <  x ) )
 
Theoremcjcn2 11498* The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( * `  z )  -  ( * `  A ) ) )  <  x ) )
 
Theoremrecn2 11499* The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( Re `  z )  -  ( Re `  A ) ) )  <  x ) )
 
Theoremimcn2 11500* The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
 |-  ( ( A  e.  CC  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  CC  (
 ( abs `  ( z  -  A ) )  < 
 y  ->  ( abs `  ( ( Im `  z )  -  ( Im `  A ) ) )  <  x ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >