Theorem List for Intuitionistic Logic Explorer - 11401-11500   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | minabs 11401 | 
The minimum of two real numbers in terms of absolute value.  (Contributed
     by Jim Kingdon, 15-May-2023.)
 | 
                     inf                           
                      | 
|   | 
| Theorem | minclpr 11402 | 
The minimum of two real numbers is one of those numbers if and only if
     dichotomy (         
   ) holds.  For example, this
can be
     combined with zletric 9370 if one is dealing with integers, but real
number
     dichotomy in general does not follow from our axioms.  (Contributed by Jim
     Kingdon, 23-May-2023.)
 | 
                      inf    
                                   
      | 
|   | 
| Theorem | rpmincl 11403 | 
The minumum of two positive real numbers is a positive real number.
     (Contributed by Jim Kingdon, 25-Apr-2023.)
 | 
                     inf                     | 
|   | 
| Theorem | bdtrilem 11404 | 
Lemma for bdtri 11405.  (Contributed by Steven Nguyen and Jim
Kingdon,
     17-May-2023.)
 | 
                          
                                                                              | 
|   | 
| Theorem | bdtri 11405 | 
Triangle inequality for bounded values.  (Contributed by Jim Kingdon,
     15-May-2023.)
 | 
                          
                       inf          
               inf                  inf                  | 
|   | 
| Theorem | mul0inf 11406 | 
Equality of a product with zero.  A bit of a curiosity, in the sense that
     theorems like abs00ap 11227 and mulap0bd 8684 may better express the ideas behind
     it.  (Contributed by Jim Kingdon, 31-Jul-2023.)
 | 
                                    inf                              | 
|   | 
| Theorem | mingeb 11407 | 
Equivalence of  
and being equal to the minimum of two reals.
     (Contributed by Jim Kingdon, 14-Oct-2024.)
 | 
                              inf        
              | 
|   | 
| Theorem | 2zinfmin 11408 | 
Two ways to express the minimum of two integers.  Because order of
     integers is decidable, we have more flexibility than for real numbers.
     (Contributed by Jim Kingdon, 14-Oct-2024.)
 | 
                     inf                     
        
     | 
|   | 
| 4.8.7  The maximum of two extended
 reals
 | 
|   | 
| Theorem | xrmaxleim 11409 | 
Value of maximum when we know which extended real is larger.
       (Contributed by Jim Kingdon, 25-Apr-2023.)
 | 
                                                     | 
|   | 
| Theorem | xrmaxiflemcl 11410 | 
Lemma for xrmaxif 11416.  Closure.  (Contributed by Jim Kingdon,
     29-Apr-2023.)
 | 
                                    
              
                            
                 | 
|   | 
| Theorem | xrmaxifle 11411 | 
An upper bound for        in the extended reals.  (Contributed by
     Jim Kingdon, 26-Apr-2023.)
 | 
                        
      
                      
                                           | 
|   | 
| Theorem | xrmaxiflemab 11412 | 
Lemma for xrmaxif 11416.  A variation of xrmaxleim 11409- that is, if we know
       which of two real numbers is larger, we know the maximum of the two.
       (Contributed by Jim Kingdon, 26-Apr-2023.)
 | 
                                                                                                          
                                   | 
|   | 
| Theorem | xrmaxiflemlub 11413 | 
Lemma for xrmaxif 11416.  A least upper bound for       .
       (Contributed by Jim Kingdon, 28-Apr-2023.)
 | 
                                                                                                  
                                                                         | 
|   | 
| Theorem | xrmaxiflemcom 11414 | 
Lemma for xrmaxif 11416.  Commutativity of an expression which we
will
       later show to be the supremum.  (Contributed by Jim Kingdon,
       29-Apr-2023.)
 | 
                                    
              
                            
                                         
                                           | 
|   | 
| Theorem | xrmaxiflemval 11415* | 
Lemma for xrmaxif 11416.  Value of the supremum.  (Contributed by
Jim
       Kingdon, 29-Apr-2023.)
 | 
           
                      
                                                                                      
                                          
        | 
|   | 
| Theorem | xrmaxif 11416 | 
Maximum of two extended reals in terms of   expressions.
       (Contributed by Jim Kingdon, 26-Apr-2023.)
 | 
                                           
                                    
                               | 
|   | 
| Theorem | xrmaxcl 11417 | 
The maximum of two extended reals is an extended real.  (Contributed by
     Jim Kingdon, 29-Apr-2023.)
 | 
                                           | 
|   | 
| Theorem | xrmax1sup 11418 | 
An extended real is less than or equal to the maximum of it and another.
     (Contributed by NM, 7-Feb-2007.)  (Revised by Jim Kingdon,
     30-Apr-2023.)
 | 
                        
      
             | 
|   | 
| Theorem | xrmax2sup 11419 | 
An extended real is less than or equal to the maximum of it and another.
     (Contributed by NM, 7-Feb-2007.)  (Revised by Jim Kingdon,
     30-Apr-2023.)
 | 
                        
      
             | 
|   | 
| Theorem | xrmaxrecl 11420 | 
The maximum of two real numbers is the same when taken as extended reals
     or as reals.  (Contributed by Jim Kingdon, 30-Apr-2023.)
 | 
                                                 
         | 
|   | 
| Theorem | xrmaxleastlt 11421 | 
The maximum as a least upper bound, in terms of less than.  (Contributed
     by Jim Kingdon, 9-Feb-2022.)
 | 
          
                  
                                             | 
|   | 
| Theorem | xrltmaxsup 11422 | 
The maximum as a least upper bound.  (Contributed by Jim Kingdon,
     10-May-2023.)
 | 
                                                                       | 
|   | 
| Theorem | xrmaxltsup 11423 | 
Two ways of saying the maximum of two numbers is less than a third.
     (Contributed by Jim Kingdon, 30-Apr-2023.)
 | 
                                                                       | 
|   | 
| Theorem | xrmaxlesup 11424 | 
Two ways of saying the maximum of two numbers is less than or equal to a
     third.  (Contributed by Mario Carneiro, 18-Jun-2014.)  (Revised by Jim
     Kingdon, 10-May-2023.)
 | 
                                                                       | 
|   | 
| Theorem | xrmaxaddlem 11425 | 
Lemma for xrmaxadd 11426.  The case where   is real.  (Contributed by
       Jim Kingdon, 11-May-2023.)
 | 
                                                     
                  
          | 
|   | 
| Theorem | xrmaxadd 11426 | 
Distributing addition over maximum.  (Contributed by Jim Kingdon,
     11-May-2023.)
 | 
                                                                                 | 
|   | 
| 4.8.8  The minimum of two extended
 reals
 | 
|   | 
| Theorem | xrnegiso 11427 | 
Negation is an order anti-isomorphism of the extended reals, which is
       its own inverse.  (Contributed by Jim Kingdon, 2-May-2023.)
 | 
            
                                              | 
|   | 
| Theorem | infxrnegsupex 11428* | 
The infimum of a set of extended reals   is the negative of the
       supremum of the negatives of its elements.  (Contributed by Jim Kingdon,
       2-May-2023.)
 | 
                               
                                                                  inf                   
                
         | 
|   | 
| Theorem | xrnegcon1d 11429 | 
Contraposition law for extended real unary minus.  (Contributed by Jim
       Kingdon, 2-May-2023.)
 | 
                                                              
       | 
|   | 
| Theorem | xrminmax 11430 | 
Minimum expressed in terms of maximum.  (Contributed by Jim Kingdon,
       2-May-2023.)
 | 
                     inf                       
                    | 
|   | 
| Theorem | xrmincl 11431 | 
The minumum of two extended reals is an extended real.  (Contributed by
     Jim Kingdon, 3-May-2023.)
 | 
                     inf                     | 
|   | 
| Theorem | xrmin1inf 11432 | 
The minimum of two extended reals is less than or equal to the first.
     (Contributed by Jim Kingdon, 3-May-2023.)
 | 
                     inf                     | 
|   | 
| Theorem | xrmin2inf 11433 | 
The minimum of two extended reals is less than or equal to the second.
     (Contributed by Jim Kingdon, 3-May-2023.)
 | 
                     inf                     | 
|   | 
| Theorem | xrmineqinf 11434 | 
The minimum of two extended reals is equal to the second if the first is
     bigger.  (Contributed by Mario Carneiro, 25-Mar-2015.)  (Revised by Jim
     Kingdon, 3-May-2023.)
 | 
                             inf    
                 | 
|   | 
| Theorem | xrltmininf 11435 | 
Two ways of saying an extended real is less than the minimum of two
     others.  (Contributed by NM, 7-Feb-2007.)  (Revised by Jim Kingdon,
     3-May-2023.)
 | 
                                  inf                                    | 
|   | 
| Theorem | xrlemininf 11436 | 
Two ways of saying a number is less than or equal to the minimum of two
     others.  (Contributed by Mario Carneiro, 18-Jun-2014.)  (Revised by Jim
     Kingdon, 4-May-2023.)
 | 
                                  inf                                    | 
|   | 
| Theorem | xrminltinf 11437 | 
Two ways of saying an extended real is greater than the minimum of two
     others.  (Contributed by Jim Kingdon, 19-May-2023.)
 | 
                              inf        
                                | 
|   | 
| Theorem | xrminrecl 11438 | 
The minimum of two real numbers is the same when taken as extended reals
     or as reals.  (Contributed by Jim Kingdon, 18-May-2023.)
 | 
                     inf                  inf                 | 
|   | 
| Theorem | xrminrpcl 11439 | 
The minimum of two positive reals is a positive real.  (Contributed by Jim
     Kingdon, 4-May-2023.)
 | 
                     inf                     | 
|   | 
| Theorem | xrminadd 11440 | 
Distributing addition over minimum.  (Contributed by Jim Kingdon,
     10-May-2023.)
 | 
                             inf                                inf                  | 
|   | 
| Theorem | xrbdtri 11441 | 
Triangle inequality for bounded values.  (Contributed by Jim Kingdon,
     15-May-2023.)
 | 
          
                
                  
               inf             
           inf                 inf        
          | 
|   | 
| Theorem | iooinsup 11442 | 
Intersection of two open intervals of extended reals.  (Contributed by
       NM, 7-Feb-2007.)  (Revised by Jim Kingdon, 22-May-2023.)
 | 
          
                  
                                                 inf                  | 
|   | 
| 4.9  Elementary limits and
 convergence
 | 
|   | 
| 4.9.1  Limits
 | 
|   | 
| Syntax | cli 11443 | 
Extend class notation with convergence relation for limits.
 | 
    | 
|   | 
| Definition | df-clim 11444* | 
Define the limit relation for complex number sequences.  See clim 11446
for
       its relational expression.  (Contributed by NM, 28-Aug-2005.)
 | 
                        
                                                             | 
|   | 
| Theorem | climrel 11445 | 
The limit relation is a relation.  (Contributed by NM, 28-Aug-2005.)
       (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
      | 
|   | 
| Theorem | clim 11446* | 
Express the predicate:  The limit of complex number sequence   is
        , or   converges to  .  This means that for any
real
        , no matter how
small, there always exists an integer   such
       that the absolute difference of any later complex number in the sequence
       and the limit is less than  .  (Contributed by NM, 28-Aug-2005.)
       (Revised by Mario Carneiro, 28-Apr-2015.)
 | 
                                                            
                                     
                                   | 
|   | 
| Theorem | climcl 11447 | 
Closure of the limit of a sequence of complex numbers.  (Contributed by
       NM, 28-Aug-2005.)  (Revised by Mario Carneiro, 28-Apr-2015.)
 | 
      
            | 
|   | 
| Theorem | clim2 11448* | 
Express the predicate:  The limit of complex number sequence   is
        , or   converges to  , with more general
quantifier
       restrictions than clim 11446.  (Contributed by NM, 6-Jan-2007.)  (Revised
       by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                                                                                          | 
|   | 
| Theorem | clim2c 11449* | 
Express the predicate  
converges to  . 
(Contributed by NM,
       24-Feb-2008.)  (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                                     
                                                           
                 
       | 
|   | 
| Theorem | clim0 11450* | 
Express the predicate  
converges to  . 
(Contributed by NM,
       24-Feb-2008.)  (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                         
                     
                            | 
|   | 
| Theorem | clim0c 11451* | 
Express the predicate  
converges to  . 
(Contributed by NM,
       24-Feb-2008.)  (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                                                     
                       
                  | 
|   | 
| Theorem | climi 11452* | 
Convergence of a sequence of complex numbers.  (Contributed by NM,
         11-Jan-2007.)  (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                                                                                   | 
|   | 
| Theorem | climi2 11453* | 
Convergence of a sequence of complex numbers.  (Contributed by NM,
         11-Jan-2007.)  (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                                                                         | 
|   | 
| Theorem | climi0 11454* | 
Convergence of a sequence of complex numbers to zero.  (Contributed by
       NM, 11-Jan-2007.)  (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                                                                   | 
|   | 
| Theorem | climconst 11455* | 
An (eventually) constant sequence converges to its value.  (Contributed
       by NM, 28-Aug-2005.)  (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                                      
    
    | 
|   | 
| Theorem | climconst2 11456 | 
A constant sequence converges to its value.  (Contributed by NM,
       6-Feb-2008.)  (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                
    | 
|   | 
| Theorem | climz 11457 | 
The zero sequence converges to zero.  (Contributed by NM, 2-Oct-1999.)
     (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
             
   | 
|   | 
| Theorem | climuni 11458 | 
An infinite sequence of complex numbers converges to at most one limit.
       (Contributed by NM, 2-Oct-1999.)  (Proof shortened by Mario Carneiro,
       31-Jan-2014.)
 | 
       
                     | 
|   | 
| Theorem | fclim 11459 | 
The limit relation is function-like, and with codomian the complex
       numbers.  (Contributed by Mario Carneiro, 31-Jan-2014.)
 | 
            | 
|   | 
| Theorem | climdm 11460 | 
Two ways to express that a function has a limit.  (The expression
             is sometimes useful as a shorthand for "the unique limit
     of the function  ").  (Contributed by Mario Carneiro,
     18-Mar-2014.)
 | 
                          | 
|   | 
| Theorem | climeu 11461* | 
An infinite sequence of complex numbers converges to at most one limit.
       (Contributed by NM, 25-Dec-2005.)
 | 
      
           
    | 
|   | 
| Theorem | climreu 11462* | 
An infinite sequence of complex numbers converges to at most one limit.
       (Contributed by NM, 25-Dec-2005.)
 | 
      
                   | 
|   | 
| Theorem | climmo 11463* | 
An infinite sequence of complex numbers converges to at most one limit.
       (Contributed by Mario Carneiro, 13-Jul-2013.)
 | 
        
   | 
|   | 
| Theorem | climeq 11464* | 
Two functions that are eventually equal to one another have the same
       limit.  (Contributed by Mario Carneiro, 5-Nov-2013.)  (Revised by Mario
       Carneiro, 31-Jan-2014.)
 | 
                                                                                                                          
                  | 
|   | 
| Theorem | climmpt 11465* | 
Exhibit a function  
with the same convergence properties as the
         not-quite-function  .  (Contributed by Mario Carneiro,
         31-Jan-2014.)
 | 
                                                                       
      
       | 
|   | 
| Theorem | 2clim 11466* | 
If two sequences converge to each other, they converge to the same
       limit.  (Contributed by NM, 24-Dec-2005.)  (Proof shortened by Mario
       Carneiro, 31-Jan-2014.)
 | 
                                                                                                                                                                                            | 
|   | 
| Theorem | climshftlemg 11467 | 
A shifted function converges if the original function converges.
       (Contributed by Mario Carneiro, 5-Nov-2013.)
 | 
                         
              
     | 
|   | 
| Theorem | climres 11468 | 
A function restricted to upper integers converges iff the original
       function converges.  (Contributed by Mario Carneiro, 13-Jul-2013.)
       (Revised by Mario Carneiro, 31-Jan-2014.)
 | 
                                         
       | 
|   | 
| Theorem | climshft 11469 | 
A shifted function converges iff the original function converges.
       (Contributed by NM, 16-Aug-2005.)  (Revised by Mario Carneiro,
       31-Jan-2014.)
 | 
                               
      
       | 
|   | 
| Theorem | serclim0 11470 | 
The zero series converges to zero.  (Contributed by Paul Chapman,
     9-Feb-2008.)  (Proof shortened by Mario Carneiro, 31-Jan-2014.)
 | 
                                   
    | 
|   | 
| Theorem | climshft2 11471* | 
A shifted function converges iff the original function converges.
         (Contributed by Paul Chapman, 21-Nov-2007.)  (Revised by Mario
         Carneiro, 6-Feb-2014.)
 | 
                                                                                                       
                                                        
       | 
|   | 
| Theorem | climabs0 11472* | 
Convergence to zero of the absolute value is equivalent to convergence
       to zero.  (Contributed by NM, 8-Jul-2008.)  (Revised by Mario Carneiro,
       31-Jan-2014.)
 | 
                                                                                                                     
                                                  
    
       | 
|   | 
| Theorem | climcn1 11473* | 
Image of a limit under a continuous map.  (Contributed by Mario
       Carneiro, 31-Jan-2014.)
 | 
                                                                                                                                         
         
                                                                                                                                                                  | 
|   | 
| Theorem | climcn2 11474* | 
Image of a limit under a continuous map, two-arg version.  (Contributed
       by Mario Carneiro, 31-Jan-2014.)
 | 
                                                                                                
      
                                                                                     
         
                                                                                                                                                                                                                              
    
        | 
|   | 
| Theorem | addcn2 11475* | 
Complex number addition is a continuous function.  Part of Proposition
       14-4.16 of [Gleason] p. 243.  (We write
out the definition directly
       because df-cn and df-cncf are not yet available to us.  See addcncntop 14798
       for the abbreviated version.)  (Contributed by Mario Carneiro,
       31-Jan-2014.)
 | 
                       
                                                     
            
                                      | 
|   | 
| Theorem | subcn2 11476* | 
Complex number subtraction is a continuous function.  Part of
       Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
       Carneiro, 31-Jan-2014.)
 | 
                       
                                                     
            
                                      | 
|   | 
| Theorem | mulcn2 11477* | 
Complex number multiplication is a continuous function.  Part of
       Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by Mario
       Carneiro, 31-Jan-2014.)
 | 
                       
                                                     
            
                                      | 
|   | 
| Theorem | reccn2ap 11478* | 
The reciprocal function is continuous.  The class   is just for
       convenience in writing the proof and typically would be passed in as an
       instance of eqid 2196.  (Contributed by Mario Carneiro,
9-Feb-2014.)
       Using apart, infimum of pair.  (Revised by Jim Kingdon, 26-May-2023.)
 | 
       inf                                                             #        
        
                     #
                               
                      | 
|   | 
| Theorem | cn1lem 11479* | 
A sufficient condition for a function to be continuous.  (Contributed by
       Mario Carneiro, 9-Feb-2014.)
 | 
                                                        
                                                                                                    | 
|   | 
| Theorem | abscn2 11480* | 
The absolute value function is continuous.  (Contributed by Mario
       Carneiro, 9-Feb-2014.)
 | 
                                                     
                           | 
|   | 
| Theorem | cjcn2 11481* | 
The complex conjugate function is continuous.  (Contributed by Mario
       Carneiro, 9-Feb-2014.)
 | 
                                                     
          
                 | 
|   | 
| Theorem | recn2 11482* | 
The real part function is continuous.  (Contributed by Mario Carneiro,
       9-Feb-2014.)
 | 
                                                     
          
                 | 
|   | 
| Theorem | imcn2 11483* | 
The imaginary part function is continuous.  (Contributed by Mario
       Carneiro, 9-Feb-2014.)
 | 
                                                     
          
                 | 
|   | 
| Theorem | climcn1lem 11484* | 
The limit of a continuous function, theorem form.  (Contributed by
         Mario Carneiro, 9-Feb-2014.)
 | 
                                                                                                                                                                                   
          
                                                                       
    
        | 
|   | 
| Theorem | climabs 11485* | 
Limit of the absolute value of a sequence.  Proposition 12-2.4(c) of
         [Gleason] p. 172.  (Contributed by NM,
7-Jun-2006.)  (Revised by Mario
         Carneiro, 9-Feb-2014.)
 | 
                                                                                                                                                                            | 
|   | 
| Theorem | climcj 11486* | 
Limit of the complex conjugate of a sequence.  Proposition 12-2.4(c)
         of [Gleason] p. 172.  (Contributed by
NM, 7-Jun-2006.)  (Revised by
         Mario Carneiro, 9-Feb-2014.)
 | 
                                                                                                                                                                
    
        | 
|   | 
| Theorem | climre 11487* | 
Limit of the real part of a sequence.  Proposition 12-2.4(c) of
         [Gleason] p. 172.  (Contributed by NM,
7-Jun-2006.)  (Revised by Mario
         Carneiro, 9-Feb-2014.)
 | 
                                                                                                                                                                
    
        | 
|   | 
| Theorem | climim 11488* | 
Limit of the imaginary part of a sequence.  Proposition 12-2.4(c) of
         [Gleason] p. 172.  (Contributed by NM,
7-Jun-2006.)  (Revised by Mario
         Carneiro, 9-Feb-2014.)
 | 
                                                                                                                                                                
    
        | 
|   | 
| Theorem | climrecl 11489* | 
The limit of a convergent real sequence is real.  Corollary 12-2.5 of
       [Gleason] p. 172.  (Contributed by NM,
10-Sep-2005.)
 | 
                                                
               
                                           | 
|   | 
| Theorem | climge0 11490* | 
A nonnegative sequence converges to a nonnegative number.  (Contributed
       by NM, 11-Sep-2005.)
 | 
                                                
               
                                               
                      
        | 
|   | 
| Theorem | climadd 11491* | 
Limit of the sum of two converging sequences.  Proposition 12-2.1(a)
           of [Gleason] p. 168.  (Contributed
by NM, 24-Sep-2005.)  (Proof
           shortened by Mario Carneiro, 31-Jan-2014.)
 | 
                                                
                                                                                         
                                                                                   
    
          | 
|   | 
| Theorem | climmul 11492* | 
Limit of the product of two converging sequences.  Proposition
           12-2.1(c) of [Gleason] p. 168. 
(Contributed by NM, 27-Dec-2005.)
           (Proof shortened by Mario Carneiro, 1-Feb-2014.)
 | 
                                                
                                                                                         
                                                                                   
    
          | 
|   | 
| Theorem | climsub 11493* | 
Limit of the difference of two converging sequences.  Proposition
           12-2.1(b) of [Gleason] p. 168. 
(Contributed by NM, 4-Aug-2007.)
           (Proof shortened by Mario Carneiro, 1-Feb-2014.)
 | 
                                                
                                                                                         
                                                                                   
    
          | 
|   | 
| Theorem | climaddc1 11494* | 
Limit of a constant  
added to each term of a sequence.
           (Contributed by NM, 24-Sep-2005.)  (Revised by Mario Carneiro,
           3-Feb-2014.)
 | 
                                                
                                                                                         
                          
                          
       | 
|   | 
| Theorem | climaddc2 11495* | 
Limit of a constant  
added to each term of a sequence.
           (Contributed by NM, 24-Sep-2005.)  (Revised by Mario Carneiro,
           3-Feb-2014.)
 | 
                                                
                                                                                         
                                                    
       | 
|   | 
| Theorem | climmulc2 11496* | 
Limit of a sequence multiplied by a constant  .  Corollary
           12-2.2 of [Gleason] p. 171. 
(Contributed by NM, 24-Sep-2005.)
           (Revised by Mario Carneiro, 3-Feb-2014.)
 | 
                                                
                                                                                         
                                                    
       | 
|   | 
| Theorem | climsubc1 11497* | 
Limit of a constant  
subtracted from each term of a sequence.
           (Contributed by Mario Carneiro, 9-Feb-2014.)
 | 
                                                
                                                                                         
                          
                          
       | 
|   | 
| Theorem | climsubc2 11498* | 
Limit of a constant  
minus each term of a sequence.
           (Contributed by NM, 24-Sep-2005.)  (Revised by Mario Carneiro,
           9-Feb-2014.)
 | 
                                                
                                                                                         
                                                    
       | 
|   | 
| Theorem | climle 11499* | 
Comparison of the limits of two sequences.  (Contributed by Paul
         Chapman, 10-Sep-2007.)  (Revised by Mario Carneiro, 1-Feb-2014.)
 | 
                                                
                    
               
                                                                    
                                               | 
|   | 
| Theorem | climsqz 11500* | 
Convergence of a sequence sandwiched between another converging
         sequence and its limit.  (Contributed by NM, 6-Feb-2008.)  (Revised by
         Mario Carneiro, 3-Feb-2014.)
 | 
                                                
                                                                                                       
                                                         
                    
    |