ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlemstep Unicode version

Theorem modfsummodlemstep 11954
Description: Induction step for modfsummod 11955. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
Hypotheses
Ref Expression
modfsummodlemstep.a  |-  ( ph  ->  A  e.  Fin )
modfsummodlemstep.n  |-  ( ph  ->  N  e.  NN )
modfsummodlemstep.b  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) B  e.  ZZ )
modfsummodlemstep.z  |-  ( ph  ->  -.  z  e.  A
)
modfsummodlemstep.h  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Assertion
Ref Expression
modfsummodlemstep  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N
)  mod  N )
)
Distinct variable groups:    A, k    k, N    z, k
Allowed substitution hints:    ph( z, k)    A( z)    B( z, k)    N( z)

Proof of Theorem modfsummodlemstep
StepHypRef Expression
1 modfsummodlemstep.a . . . 4  |-  ( ph  ->  A  e.  Fin )
2 vex 2802 . . . . 5  |-  z  e. 
_V
32a1i 9 . . . 4  |-  ( ph  ->  z  e.  _V )
4 modfsummodlemstep.z . . . . 5  |-  ( ph  ->  -.  z  e.  A
)
5 df-nel 2496 . . . . 5  |-  ( z  e/  A  <->  -.  z  e.  A )
64, 5sylibr 134 . . . 4  |-  ( ph  ->  z  e/  A )
7 modfsummodlemstep.b . . . 4  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) B  e.  ZZ )
8 fsumsplitsnun 11916 . . . 4  |-  ( ( A  e.  Fin  /\  ( z  e.  _V  /\  z  e/  A )  /\  A. k  e.  ( A  u.  {
z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { z } ) B  =  (
sum_ k  e.  A  B  +  [_ z  / 
k ]_ B ) )
91, 3, 6, 7, 8syl121anc 1276 . . 3  |-  ( ph  -> 
sum_ k  e.  ( A  u.  { z } ) B  =  ( sum_ k  e.  A  B  +  [_ z  / 
k ]_ B ) )
109oveq1d 6009 . 2  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( (
sum_ k  e.  A  B  +  [_ z  / 
k ]_ B )  mod 
N ) )
11 ralunb 3385 . . . . . . . . 9  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  <->  ( A. k  e.  A  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ ) )
1211simplbi 274 . . . . . . . 8  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  A. k  e.  A  B  e.  ZZ )
137, 12syl 14 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
14 fsumzcl2 11902 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  ZZ )  ->  sum_ k  e.  A  B  e.  ZZ )
151, 13, 14syl2anc 411 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  A  B  e.  ZZ )
16 zq 9809 . . . . . 6  |-  ( sum_ k  e.  A  B  e.  ZZ  ->  sum_ k  e.  A  B  e.  QQ )
1715, 16syl 14 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  B  e.  QQ )
18 modfsummodlem1 11953 . . . . . . 7  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
197, 18syl 14 . . . . . 6  |-  ( ph  ->  [_ z  /  k ]_ B  e.  ZZ )
20 zq 9809 . . . . . 6  |-  ( [_ z  /  k ]_ B  e.  ZZ  ->  [_ z  / 
k ]_ B  e.  QQ )
2119, 20syl 14 . . . . 5  |-  ( ph  ->  [_ z  /  k ]_ B  e.  QQ )
22 modfsummodlemstep.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
23 nnq 9816 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
2422, 23syl 14 . . . . 5  |-  ( ph  ->  N  e.  QQ )
2522nngt0d 9142 . . . . 5  |-  ( ph  ->  0  <  N )
26 modqaddabs 10571 . . . . 5  |-  ( ( ( sum_ k  e.  A  B  e.  QQ  /\  [_ z  /  k ]_ B  e.  QQ )  /\  ( N  e.  QQ  /\  0  <  N ) )  -> 
( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
) )
2717, 21, 24, 25, 26syl22anc 1272 . . . 4  |-  ( ph  ->  ( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
) )
2827eqcomd 2235 . . 3  |-  ( ph  ->  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
)  =  ( ( ( sum_ k  e.  A  B  mod  N )  +  ( [_ z  / 
k ]_ B  mod  N
) )  mod  N
) )
29 modfsummodlemstep.h . . . . 5  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
30 modqabs2 10567 . . . . . . 7  |-  ( (
[_ z  /  k ]_ B  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  -> 
( ( [_ z  /  k ]_ B  mod  N )  mod  N
)  =  ( [_ z  /  k ]_ B  mod  N ) )
3121, 24, 25, 30syl3anc 1271 . . . . . 6  |-  ( ph  ->  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
)  =  ( [_ z  /  k ]_ B  mod  N ) )
3231eqcomd 2235 . . . . 5  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  =  ( (
[_ z  /  k ]_ B  mod  N )  mod  N ) )
3329, 32oveq12d 6012 . . . 4  |-  ( ph  ->  ( ( sum_ k  e.  A  B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  =  ( ( sum_ k  e.  A  ( B  mod  N )  mod  N
)  +  ( (
[_ z  /  k ]_ B  mod  N )  mod  N ) ) )
3433oveq1d 6009 . . 3  |-  ( ph  ->  ( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( (
sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
) )
3528, 34eqtrd 2262 . 2  |-  ( ph  ->  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
)  =  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
) )
36 zmodcl 10553 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  N  e.  NN )  ->  ( B  mod  N
)  e.  NN0 )
3736nn0zd 9555 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  N  e.  NN )  ->  ( B  mod  N
)  e.  ZZ )
3837expcom 116 . . . . . . . 8  |-  ( N  e.  NN  ->  ( B  e.  ZZ  ->  ( B  mod  N )  e.  ZZ ) )
3938ralimdv 2598 . . . . . . 7  |-  ( N  e.  NN  ->  ( A. k  e.  A  B  e.  ZZ  ->  A. k  e.  A  ( B  mod  N )  e.  ZZ ) )
4022, 13, 39sylc 62 . . . . . 6  |-  ( ph  ->  A. k  e.  A  ( B  mod  N )  e.  ZZ )
41 fsumzcl2 11902 . . . . . 6  |-  ( ( A  e.  Fin  /\  A. k  e.  A  ( B  mod  N )  e.  ZZ )  ->  sum_ k  e.  A  ( B  mod  N )  e.  ZZ )
421, 40, 41syl2anc 411 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  ( B  mod  N )  e.  ZZ )
43 zq 9809 . . . . 5  |-  ( sum_ k  e.  A  ( B  mod  N )  e.  ZZ  ->  sum_ k  e.  A  ( B  mod  N )  e.  QQ )
4442, 43syl 14 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  ( B  mod  N )  e.  QQ )
4519, 22zmodcld 10554 . . . . 5  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  e.  NN0 )
46 nn0z 9454 . . . . 5  |-  ( (
[_ z  /  k ]_ B  mod  N )  e.  NN0  ->  ( [_ z  /  k ]_ B  mod  N )  e.  ZZ )
47 zq 9809 . . . . 5  |-  ( (
[_ z  /  k ]_ B  mod  N )  e.  ZZ  ->  ( [_ z  /  k ]_ B  mod  N )  e.  QQ )
4845, 46, 473syl 17 . . . 4  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  e.  QQ )
49 modqaddabs 10571 . . . 4  |-  ( ( ( sum_ k  e.  A  ( B  mod  N )  e.  QQ  /\  ( [_ z  /  k ]_ B  mod  N )  e.  QQ )  /\  ( N  e.  QQ  /\  0  <  N ) )  ->  ( (
( sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
)  =  ( (
sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  mod 
N ) )
5044, 48, 24, 25, 49syl22anc 1272 . . 3  |-  ( ph  ->  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod 
N )  +  ( ( [_ z  / 
k ]_ B  mod  N
)  mod  N )
)  mod  N )  =  ( ( sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  / 
k ]_ B  mod  N
) )  mod  N
) )
5138ralimdv 2598 . . . . . . 7  |-  ( N  e.  NN  ->  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  A. k  e.  ( A  u.  {
z } ) ( B  mod  N )  e.  ZZ ) )
5222, 7, 51sylc 62 . . . . . 6  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) ( B  mod  N )  e.  ZZ )
53 fsumsplitsnun 11916 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( z  e.  _V  /\  z  e/  A )  /\  A. k  e.  ( A  u.  {
z } ) ( B  mod  N )  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { z } ) ( B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  + 
[_ z  /  k ]_ ( B  mod  N
) ) )
541, 3, 6, 52, 53syl121anc 1276 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( A  u.  { z } ) ( B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  +  [_ z  / 
k ]_ ( B  mod  N ) ) )
55 csbov1g 6035 . . . . . . 7  |-  ( z  e.  _V  ->  [_ z  /  k ]_ ( B  mod  N )  =  ( [_ z  / 
k ]_ B  mod  N
) )
5655elv 2803 . . . . . 6  |-  [_ z  /  k ]_ ( B  mod  N )  =  ( [_ z  / 
k ]_ B  mod  N
)
5756oveq2i 6005 . . . . 5  |-  ( sum_ k  e.  A  ( B  mod  N )  + 
[_ z  /  k ]_ ( B  mod  N
) )  =  (
sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )
5854, 57eqtr2di 2279 . . . 4  |-  ( ph  ->  ( sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  = 
sum_ k  e.  ( A  u.  { z } ) ( B  mod  N ) )
5958oveq1d 6009 . . 3  |-  ( ph  ->  ( ( sum_ k  e.  A  ( B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( sum_ k  e.  ( A  u.  {
z } ) ( B  mod  N )  mod  N ) )
6050, 59eqtrd 2262 . 2  |-  ( ph  ->  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod 
N )  +  ( ( [_ z  / 
k ]_ B  mod  N
)  mod  N )
)  mod  N )  =  ( sum_ k  e.  ( A  u.  {
z } ) ( B  mod  N )  mod  N ) )
6110, 35, 603eqtrd 2266 1  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N
)  mod  N )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    e/ wnel 2495   A.wral 2508   _Vcvv 2799   [_csb 3124    u. cun 3195   {csn 3666   class class class wbr 4082  (class class class)co 5994   Fincfn 6877   0cc0 7987    + caddc 7990    < clt 8169   NNcn 9098   NN0cn0 9357   ZZcz 9434   QQcq 9802    mod cmo 10531   sum_csu 11850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851
This theorem is referenced by:  modfsummod  11955
  Copyright terms: Public domain W3C validator