ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlemstep Unicode version

Theorem modfsummodlemstep 11258
Description: Induction step for modfsummod 11259. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
Hypotheses
Ref Expression
modfsummodlemstep.a  |-  ( ph  ->  A  e.  Fin )
modfsummodlemstep.n  |-  ( ph  ->  N  e.  NN )
modfsummodlemstep.b  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) B  e.  ZZ )
modfsummodlemstep.z  |-  ( ph  ->  -.  z  e.  A
)
modfsummodlemstep.h  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Assertion
Ref Expression
modfsummodlemstep  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N
)  mod  N )
)
Distinct variable groups:    A, k    k, N    z, k
Allowed substitution hints:    ph( z, k)    A( z)    B( z, k)    N( z)

Proof of Theorem modfsummodlemstep
StepHypRef Expression
1 modfsummodlemstep.a . . . 4  |-  ( ph  ->  A  e.  Fin )
2 vex 2692 . . . . 5  |-  z  e. 
_V
32a1i 9 . . . 4  |-  ( ph  ->  z  e.  _V )
4 modfsummodlemstep.z . . . . 5  |-  ( ph  ->  -.  z  e.  A
)
5 df-nel 2405 . . . . 5  |-  ( z  e/  A  <->  -.  z  e.  A )
64, 5sylibr 133 . . . 4  |-  ( ph  ->  z  e/  A )
7 modfsummodlemstep.b . . . 4  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) B  e.  ZZ )
8 fsumsplitsnun 11220 . . . 4  |-  ( ( A  e.  Fin  /\  ( z  e.  _V  /\  z  e/  A )  /\  A. k  e.  ( A  u.  {
z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { z } ) B  =  (
sum_ k  e.  A  B  +  [_ z  / 
k ]_ B ) )
91, 3, 6, 7, 8syl121anc 1222 . . 3  |-  ( ph  -> 
sum_ k  e.  ( A  u.  { z } ) B  =  ( sum_ k  e.  A  B  +  [_ z  / 
k ]_ B ) )
109oveq1d 5797 . 2  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( (
sum_ k  e.  A  B  +  [_ z  / 
k ]_ B )  mod 
N ) )
11 ralunb 3262 . . . . . . . . 9  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  <->  ( A. k  e.  A  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ ) )
1211simplbi 272 . . . . . . . 8  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  A. k  e.  A  B  e.  ZZ )
137, 12syl 14 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
14 fsumzcl2 11206 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  ZZ )  ->  sum_ k  e.  A  B  e.  ZZ )
151, 13, 14syl2anc 409 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  A  B  e.  ZZ )
16 zq 9445 . . . . . 6  |-  ( sum_ k  e.  A  B  e.  ZZ  ->  sum_ k  e.  A  B  e.  QQ )
1715, 16syl 14 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  B  e.  QQ )
18 modfsummodlem1 11257 . . . . . . 7  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
197, 18syl 14 . . . . . 6  |-  ( ph  ->  [_ z  /  k ]_ B  e.  ZZ )
20 zq 9445 . . . . . 6  |-  ( [_ z  /  k ]_ B  e.  ZZ  ->  [_ z  / 
k ]_ B  e.  QQ )
2119, 20syl 14 . . . . 5  |-  ( ph  ->  [_ z  /  k ]_ B  e.  QQ )
22 modfsummodlemstep.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
23 nnq 9452 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
2422, 23syl 14 . . . . 5  |-  ( ph  ->  N  e.  QQ )
2522nngt0d 8788 . . . . 5  |-  ( ph  ->  0  <  N )
26 modqaddabs 10166 . . . . 5  |-  ( ( ( sum_ k  e.  A  B  e.  QQ  /\  [_ z  /  k ]_ B  e.  QQ )  /\  ( N  e.  QQ  /\  0  <  N ) )  -> 
( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
) )
2717, 21, 24, 25, 26syl22anc 1218 . . . 4  |-  ( ph  ->  ( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
) )
2827eqcomd 2146 . . 3  |-  ( ph  ->  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
)  =  ( ( ( sum_ k  e.  A  B  mod  N )  +  ( [_ z  / 
k ]_ B  mod  N
) )  mod  N
) )
29 modfsummodlemstep.h . . . . 5  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
30 modqabs2 10162 . . . . . . 7  |-  ( (
[_ z  /  k ]_ B  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  -> 
( ( [_ z  /  k ]_ B  mod  N )  mod  N
)  =  ( [_ z  /  k ]_ B  mod  N ) )
3121, 24, 25, 30syl3anc 1217 . . . . . 6  |-  ( ph  ->  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
)  =  ( [_ z  /  k ]_ B  mod  N ) )
3231eqcomd 2146 . . . . 5  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  =  ( (
[_ z  /  k ]_ B  mod  N )  mod  N ) )
3329, 32oveq12d 5800 . . . 4  |-  ( ph  ->  ( ( sum_ k  e.  A  B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  =  ( ( sum_ k  e.  A  ( B  mod  N )  mod  N
)  +  ( (
[_ z  /  k ]_ B  mod  N )  mod  N ) ) )
3433oveq1d 5797 . . 3  |-  ( ph  ->  ( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( (
sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
) )
3528, 34eqtrd 2173 . 2  |-  ( ph  ->  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
)  =  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
) )
36 zmodcl 10148 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  N  e.  NN )  ->  ( B  mod  N
)  e.  NN0 )
3736nn0zd 9195 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  N  e.  NN )  ->  ( B  mod  N
)  e.  ZZ )
3837expcom 115 . . . . . . . 8  |-  ( N  e.  NN  ->  ( B  e.  ZZ  ->  ( B  mod  N )  e.  ZZ ) )
3938ralimdv 2503 . . . . . . 7  |-  ( N  e.  NN  ->  ( A. k  e.  A  B  e.  ZZ  ->  A. k  e.  A  ( B  mod  N )  e.  ZZ ) )
4022, 13, 39sylc 62 . . . . . 6  |-  ( ph  ->  A. k  e.  A  ( B  mod  N )  e.  ZZ )
41 fsumzcl2 11206 . . . . . 6  |-  ( ( A  e.  Fin  /\  A. k  e.  A  ( B  mod  N )  e.  ZZ )  ->  sum_ k  e.  A  ( B  mod  N )  e.  ZZ )
421, 40, 41syl2anc 409 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  ( B  mod  N )  e.  ZZ )
43 zq 9445 . . . . 5  |-  ( sum_ k  e.  A  ( B  mod  N )  e.  ZZ  ->  sum_ k  e.  A  ( B  mod  N )  e.  QQ )
4442, 43syl 14 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  ( B  mod  N )  e.  QQ )
4519, 22zmodcld 10149 . . . . 5  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  e.  NN0 )
46 nn0z 9098 . . . . 5  |-  ( (
[_ z  /  k ]_ B  mod  N )  e.  NN0  ->  ( [_ z  /  k ]_ B  mod  N )  e.  ZZ )
47 zq 9445 . . . . 5  |-  ( (
[_ z  /  k ]_ B  mod  N )  e.  ZZ  ->  ( [_ z  /  k ]_ B  mod  N )  e.  QQ )
4845, 46, 473syl 17 . . . 4  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  e.  QQ )
49 modqaddabs 10166 . . . 4  |-  ( ( ( sum_ k  e.  A  ( B  mod  N )  e.  QQ  /\  ( [_ z  /  k ]_ B  mod  N )  e.  QQ )  /\  ( N  e.  QQ  /\  0  <  N ) )  ->  ( (
( sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
)  =  ( (
sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  mod 
N ) )
5044, 48, 24, 25, 49syl22anc 1218 . . 3  |-  ( ph  ->  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod 
N )  +  ( ( [_ z  / 
k ]_ B  mod  N
)  mod  N )
)  mod  N )  =  ( ( sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  / 
k ]_ B  mod  N
) )  mod  N
) )
5138ralimdv 2503 . . . . . . 7  |-  ( N  e.  NN  ->  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  A. k  e.  ( A  u.  {
z } ) ( B  mod  N )  e.  ZZ ) )
5222, 7, 51sylc 62 . . . . . 6  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) ( B  mod  N )  e.  ZZ )
53 fsumsplitsnun 11220 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( z  e.  _V  /\  z  e/  A )  /\  A. k  e.  ( A  u.  {
z } ) ( B  mod  N )  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { z } ) ( B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  + 
[_ z  /  k ]_ ( B  mod  N
) ) )
541, 3, 6, 52, 53syl121anc 1222 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( A  u.  { z } ) ( B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  +  [_ z  / 
k ]_ ( B  mod  N ) ) )
55 csbov1g 5819 . . . . . . 7  |-  ( z  e.  _V  ->  [_ z  /  k ]_ ( B  mod  N )  =  ( [_ z  / 
k ]_ B  mod  N
) )
5655elv 2693 . . . . . 6  |-  [_ z  /  k ]_ ( B  mod  N )  =  ( [_ z  / 
k ]_ B  mod  N
)
5756oveq2i 5793 . . . . 5  |-  ( sum_ k  e.  A  ( B  mod  N )  + 
[_ z  /  k ]_ ( B  mod  N
) )  =  (
sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )
5854, 57eqtr2di 2190 . . . 4  |-  ( ph  ->  ( sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  = 
sum_ k  e.  ( A  u.  { z } ) ( B  mod  N ) )
5958oveq1d 5797 . . 3  |-  ( ph  ->  ( ( sum_ k  e.  A  ( B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( sum_ k  e.  ( A  u.  {
z } ) ( B  mod  N )  mod  N ) )
6050, 59eqtrd 2173 . 2  |-  ( ph  ->  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod 
N )  +  ( ( [_ z  / 
k ]_ B  mod  N
)  mod  N )
)  mod  N )  =  ( sum_ k  e.  ( A  u.  {
z } ) ( B  mod  N )  mod  N ) )
6110, 35, 603eqtrd 2177 1  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N
)  mod  N )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    e/ wnel 2404   A.wral 2417   _Vcvv 2689   [_csb 3007    u. cun 3074   {csn 3532   class class class wbr 3937  (class class class)co 5782   Fincfn 6642   0cc0 7644    + caddc 7647    < clt 7824   NNcn 8744   NN0cn0 9001   ZZcz 9078   QQcq 9438    mod cmo 10126   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  modfsummod  11259
  Copyright terms: Public domain W3C validator