ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlemstep Unicode version

Theorem modfsummodlemstep 11478
Description: Induction step for modfsummod 11479. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
Hypotheses
Ref Expression
modfsummodlemstep.a  |-  ( ph  ->  A  e.  Fin )
modfsummodlemstep.n  |-  ( ph  ->  N  e.  NN )
modfsummodlemstep.b  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) B  e.  ZZ )
modfsummodlemstep.z  |-  ( ph  ->  -.  z  e.  A
)
modfsummodlemstep.h  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Assertion
Ref Expression
modfsummodlemstep  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N
)  mod  N )
)
Distinct variable groups:    A, k    k, N    z, k
Allowed substitution hints:    ph( z, k)    A( z)    B( z, k)    N( z)

Proof of Theorem modfsummodlemstep
StepHypRef Expression
1 modfsummodlemstep.a . . . 4  |-  ( ph  ->  A  e.  Fin )
2 vex 2752 . . . . 5  |-  z  e. 
_V
32a1i 9 . . . 4  |-  ( ph  ->  z  e.  _V )
4 modfsummodlemstep.z . . . . 5  |-  ( ph  ->  -.  z  e.  A
)
5 df-nel 2453 . . . . 5  |-  ( z  e/  A  <->  -.  z  e.  A )
64, 5sylibr 134 . . . 4  |-  ( ph  ->  z  e/  A )
7 modfsummodlemstep.b . . . 4  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) B  e.  ZZ )
8 fsumsplitsnun 11440 . . . 4  |-  ( ( A  e.  Fin  /\  ( z  e.  _V  /\  z  e/  A )  /\  A. k  e.  ( A  u.  {
z } ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { z } ) B  =  (
sum_ k  e.  A  B  +  [_ z  / 
k ]_ B ) )
91, 3, 6, 7, 8syl121anc 1253 . . 3  |-  ( ph  -> 
sum_ k  e.  ( A  u.  { z } ) B  =  ( sum_ k  e.  A  B  +  [_ z  / 
k ]_ B ) )
109oveq1d 5903 . 2  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( (
sum_ k  e.  A  B  +  [_ z  / 
k ]_ B )  mod 
N ) )
11 ralunb 3328 . . . . . . . . 9  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  <->  ( A. k  e.  A  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ ) )
1211simplbi 274 . . . . . . . 8  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  A. k  e.  A  B  e.  ZZ )
137, 12syl 14 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
14 fsumzcl2 11426 . . . . . . 7  |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  ZZ )  ->  sum_ k  e.  A  B  e.  ZZ )
151, 13, 14syl2anc 411 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  A  B  e.  ZZ )
16 zq 9639 . . . . . 6  |-  ( sum_ k  e.  A  B  e.  ZZ  ->  sum_ k  e.  A  B  e.  QQ )
1715, 16syl 14 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  B  e.  QQ )
18 modfsummodlem1 11477 . . . . . . 7  |-  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
197, 18syl 14 . . . . . 6  |-  ( ph  ->  [_ z  /  k ]_ B  e.  ZZ )
20 zq 9639 . . . . . 6  |-  ( [_ z  /  k ]_ B  e.  ZZ  ->  [_ z  / 
k ]_ B  e.  QQ )
2119, 20syl 14 . . . . 5  |-  ( ph  ->  [_ z  /  k ]_ B  e.  QQ )
22 modfsummodlemstep.n . . . . . 6  |-  ( ph  ->  N  e.  NN )
23 nnq 9646 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
2422, 23syl 14 . . . . 5  |-  ( ph  ->  N  e.  QQ )
2522nngt0d 8976 . . . . 5  |-  ( ph  ->  0  <  N )
26 modqaddabs 10375 . . . . 5  |-  ( ( ( sum_ k  e.  A  B  e.  QQ  /\  [_ z  /  k ]_ B  e.  QQ )  /\  ( N  e.  QQ  /\  0  <  N ) )  -> 
( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
) )
2717, 21, 24, 25, 26syl22anc 1249 . . . 4  |-  ( ph  ->  ( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
) )
2827eqcomd 2193 . . 3  |-  ( ph  ->  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
)  =  ( ( ( sum_ k  e.  A  B  mod  N )  +  ( [_ z  / 
k ]_ B  mod  N
) )  mod  N
) )
29 modfsummodlemstep.h . . . . 5  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
30 modqabs2 10371 . . . . . . 7  |-  ( (
[_ z  /  k ]_ B  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  -> 
( ( [_ z  /  k ]_ B  mod  N )  mod  N
)  =  ( [_ z  /  k ]_ B  mod  N ) )
3121, 24, 25, 30syl3anc 1248 . . . . . 6  |-  ( ph  ->  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
)  =  ( [_ z  /  k ]_ B  mod  N ) )
3231eqcomd 2193 . . . . 5  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  =  ( (
[_ z  /  k ]_ B  mod  N )  mod  N ) )
3329, 32oveq12d 5906 . . . 4  |-  ( ph  ->  ( ( sum_ k  e.  A  B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  =  ( ( sum_ k  e.  A  ( B  mod  N )  mod  N
)  +  ( (
[_ z  /  k ]_ B  mod  N )  mod  N ) ) )
3433oveq1d 5903 . . 3  |-  ( ph  ->  ( ( ( sum_ k  e.  A  B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( ( (
sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
) )
3528, 34eqtrd 2220 . 2  |-  ( ph  ->  ( ( sum_ k  e.  A  B  +  [_ z  /  k ]_ B )  mod  N
)  =  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
) )
36 zmodcl 10357 . . . . . . . . . 10  |-  ( ( B  e.  ZZ  /\  N  e.  NN )  ->  ( B  mod  N
)  e.  NN0 )
3736nn0zd 9386 . . . . . . . . 9  |-  ( ( B  e.  ZZ  /\  N  e.  NN )  ->  ( B  mod  N
)  e.  ZZ )
3837expcom 116 . . . . . . . 8  |-  ( N  e.  NN  ->  ( B  e.  ZZ  ->  ( B  mod  N )  e.  ZZ ) )
3938ralimdv 2555 . . . . . . 7  |-  ( N  e.  NN  ->  ( A. k  e.  A  B  e.  ZZ  ->  A. k  e.  A  ( B  mod  N )  e.  ZZ ) )
4022, 13, 39sylc 62 . . . . . 6  |-  ( ph  ->  A. k  e.  A  ( B  mod  N )  e.  ZZ )
41 fsumzcl2 11426 . . . . . 6  |-  ( ( A  e.  Fin  /\  A. k  e.  A  ( B  mod  N )  e.  ZZ )  ->  sum_ k  e.  A  ( B  mod  N )  e.  ZZ )
421, 40, 41syl2anc 411 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  ( B  mod  N )  e.  ZZ )
43 zq 9639 . . . . 5  |-  ( sum_ k  e.  A  ( B  mod  N )  e.  ZZ  ->  sum_ k  e.  A  ( B  mod  N )  e.  QQ )
4442, 43syl 14 . . . 4  |-  ( ph  -> 
sum_ k  e.  A  ( B  mod  N )  e.  QQ )
4519, 22zmodcld 10358 . . . . 5  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  e.  NN0 )
46 nn0z 9286 . . . . 5  |-  ( (
[_ z  /  k ]_ B  mod  N )  e.  NN0  ->  ( [_ z  /  k ]_ B  mod  N )  e.  ZZ )
47 zq 9639 . . . . 5  |-  ( (
[_ z  /  k ]_ B  mod  N )  e.  ZZ  ->  ( [_ z  /  k ]_ B  mod  N )  e.  QQ )
4845, 46, 473syl 17 . . . 4  |-  ( ph  ->  ( [_ z  / 
k ]_ B  mod  N
)  e.  QQ )
49 modqaddabs 10375 . . . 4  |-  ( ( ( sum_ k  e.  A  ( B  mod  N )  e.  QQ  /\  ( [_ z  /  k ]_ B  mod  N )  e.  QQ )  /\  ( N  e.  QQ  /\  0  <  N ) )  ->  ( (
( sum_ k  e.  A  ( B  mod  N )  mod  N )  +  ( ( [_ z  /  k ]_ B  mod  N )  mod  N
) )  mod  N
)  =  ( (
sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  mod 
N ) )
5044, 48, 24, 25, 49syl22anc 1249 . . 3  |-  ( ph  ->  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod 
N )  +  ( ( [_ z  / 
k ]_ B  mod  N
)  mod  N )
)  mod  N )  =  ( ( sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  / 
k ]_ B  mod  N
) )  mod  N
) )
5138ralimdv 2555 . . . . . . 7  |-  ( N  e.  NN  ->  ( A. k  e.  ( A  u.  { z } ) B  e.  ZZ  ->  A. k  e.  ( A  u.  {
z } ) ( B  mod  N )  e.  ZZ ) )
5222, 7, 51sylc 62 . . . . . 6  |-  ( ph  ->  A. k  e.  ( A  u.  { z } ) ( B  mod  N )  e.  ZZ )
53 fsumsplitsnun 11440 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( z  e.  _V  /\  z  e/  A )  /\  A. k  e.  ( A  u.  {
z } ) ( B  mod  N )  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { z } ) ( B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  + 
[_ z  /  k ]_ ( B  mod  N
) ) )
541, 3, 6, 52, 53syl121anc 1253 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( A  u.  { z } ) ( B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  +  [_ z  / 
k ]_ ( B  mod  N ) ) )
55 csbov1g 5928 . . . . . . 7  |-  ( z  e.  _V  ->  [_ z  /  k ]_ ( B  mod  N )  =  ( [_ z  / 
k ]_ B  mod  N
) )
5655elv 2753 . . . . . 6  |-  [_ z  /  k ]_ ( B  mod  N )  =  ( [_ z  / 
k ]_ B  mod  N
)
5756oveq2i 5899 . . . . 5  |-  ( sum_ k  e.  A  ( B  mod  N )  + 
[_ z  /  k ]_ ( B  mod  N
) )  =  (
sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )
5854, 57eqtr2di 2237 . . . 4  |-  ( ph  ->  ( sum_ k  e.  A  ( B  mod  N )  +  ( [_ z  /  k ]_ B  mod  N ) )  = 
sum_ k  e.  ( A  u.  { z } ) ( B  mod  N ) )
5958oveq1d 5903 . . 3  |-  ( ph  ->  ( ( sum_ k  e.  A  ( B  mod  N )  +  (
[_ z  /  k ]_ B  mod  N ) )  mod  N )  =  ( sum_ k  e.  ( A  u.  {
z } ) ( B  mod  N )  mod  N ) )
6050, 59eqtrd 2220 . 2  |-  ( ph  ->  ( ( ( sum_ k  e.  A  ( B  mod  N )  mod 
N )  +  ( ( [_ z  / 
k ]_ B  mod  N
)  mod  N )
)  mod  N )  =  ( sum_ k  e.  ( A  u.  {
z } ) ( B  mod  N )  mod  N ) )
6110, 35, 603eqtrd 2224 1  |-  ( ph  ->  ( sum_ k  e.  ( A  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N
)  mod  N )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158    e/ wnel 2452   A.wral 2465   _Vcvv 2749   [_csb 3069    u. cun 3139   {csn 3604   class class class wbr 4015  (class class class)co 5888   Fincfn 6753   0cc0 7824    + caddc 7827    < clt 8005   NNcn 8932   NN0cn0 9189   ZZcz 9266   QQcq 9632    mod cmo 10335   sum_csu 11374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-frec 6405  df-1o 6430  df-oadd 6434  df-er 6548  df-en 6754  df-dom 6755  df-fin 6756  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fzo 10156  df-fl 10283  df-mod 10336  df-seqfrec 10459  df-exp 10533  df-ihash 10769  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-clim 11300  df-sumdc 11375
This theorem is referenced by:  modfsummod  11479
  Copyright terms: Public domain W3C validator