ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlem1 GIF version

Theorem modfsummodlem1 11573
Description: Lemma for modfsummod 11575. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Assertion
Ref Expression
modfsummodlem1 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
Distinct variable groups:   𝐴,𝑘   𝑧,𝑘
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑘)

Proof of Theorem modfsummodlem1
StepHypRef Expression
1 vsnid 3646 . . 3 𝑧 ∈ {𝑧}
2 elun2 3323 . . 3 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝐴 ∪ {𝑧}))
31, 2ax-mp 5 . 2 𝑧 ∈ (𝐴 ∪ {𝑧})
4 rspcsbela 3136 . 2 ((𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
53, 4mpan 424 1 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  wral 2468  csb 3076  cun 3147  {csn 3614  cz 9303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2758  df-sbc 2982  df-csb 3077  df-un 3153  df-in 3155  df-ss 3162  df-sn 3620
This theorem is referenced by:  modfsummodlemstep  11574
  Copyright terms: Public domain W3C validator