| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modfsummodlem1 | GIF version | ||
| Description: Lemma for modfsummod 11813. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| modfsummodlem1 | ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnid 3666 | . . 3 ⊢ 𝑧 ∈ {𝑧} | |
| 2 | elun2 3342 | . . 3 ⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝐴 ∪ {𝑧})) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑧 ∈ (𝐴 ∪ {𝑧}) |
| 4 | rspcsbela 3154 | . 2 ⊢ ((𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | |
| 5 | 3, 4 | mpan 424 | 1 ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∀wral 2485 ⦋csb 3094 ∪ cun 3165 {csn 3634 ℤcz 9379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 |
| This theorem is referenced by: modfsummodlemstep 11812 |
| Copyright terms: Public domain | W3C validator |