Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > modfsummodlem1 | GIF version |
Description: Lemma for modfsummod 11395. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
Ref | Expression |
---|---|
modfsummodlem1 | ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid 3607 | . . 3 ⊢ 𝑧 ∈ {𝑧} | |
2 | elun2 3289 | . . 3 ⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝐴 ∪ {𝑧})) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑧 ∈ (𝐴 ∪ {𝑧}) |
4 | rspcsbela 3103 | . 2 ⊢ ((𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | |
5 | 3, 4 | mpan 421 | 1 ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∀wral 2443 ⦋csb 3044 ∪ cun 3113 {csn 3575 ℤcz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-v 2727 df-sbc 2951 df-csb 3045 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 |
This theorem is referenced by: modfsummodlemstep 11394 |
Copyright terms: Public domain | W3C validator |