Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlem1 GIF version

Theorem modfsummodlem1 11237
 Description: Lemma for modfsummod 11239. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Assertion
Ref Expression
modfsummodlem1 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
Distinct variable groups:   𝐴,𝑘   𝑧,𝑘
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑘)

Proof of Theorem modfsummodlem1
StepHypRef Expression
1 vsnid 3557 . . 3 𝑧 ∈ {𝑧}
2 elun2 3244 . . 3 (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝐴 ∪ {𝑧}))
31, 2ax-mp 5 . 2 𝑧 ∈ (𝐴 ∪ {𝑧})
4 rspcsbela 3059 . 2 ((𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑧 / 𝑘𝐵 ∈ ℤ)
53, 4mpan 420 1 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1480  ∀wral 2416  ⦋csb 3003   ∪ cun 3069  {csn 3527  ℤcz 9066 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533 This theorem is referenced by:  modfsummodlemstep  11238
 Copyright terms: Public domain W3C validator