| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modfsummodlem1 | GIF version | ||
| Description: Lemma for modfsummod 11935. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| modfsummodlem1 | ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnid 3678 | . . 3 ⊢ 𝑧 ∈ {𝑧} | |
| 2 | elun2 3352 | . . 3 ⊢ (𝑧 ∈ {𝑧} → 𝑧 ∈ (𝐴 ∪ {𝑧})) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝑧 ∈ (𝐴 ∪ {𝑧}) |
| 4 | rspcsbela 3164 | . 2 ⊢ ((𝑧 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) | |
| 5 | 3, 4 | mpan 424 | 1 ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ∀wral 2488 ⦋csb 3104 ∪ cun 3175 {csn 3646 ℤcz 9414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 |
| This theorem is referenced by: modfsummodlemstep 11934 |
| Copyright terms: Public domain | W3C validator |