ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vsnid Unicode version

Theorem vsnid 3675
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
vsnid  |-  x  e. 
{ x }

Proof of Theorem vsnid
StepHypRef Expression
1 vex 2779 . 2  |-  x  e. 
_V
21snid 3674 1  |-  x  e. 
{ x }
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sn 3649
This theorem is referenced by:  rext  4277  snnex  4513  dtruex  4625  fnressn  5793  fressnfv  5794  findcard2d  7014  findcard2sd  7015  diffifi  7017  ac6sfi  7021  fisseneq  7057  finomni  7268  cc2lem  7413  modfsummodlem1  11882  txdis  14864  txdis1cn  14865
  Copyright terms: Public domain W3C validator