Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vsnid | Unicode version |
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . 2 | |
2 | 1 | snid 3620 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sn 3595 |
This theorem is referenced by: rext 4209 snnex 4442 dtruex 4552 fnressn 5694 fressnfv 5695 findcard2d 6881 findcard2sd 6882 diffifi 6884 ac6sfi 6888 fisseneq 6921 finomni 7128 cc2lem 7240 modfsummodlem1 11432 txdis 13348 txdis1cn 13349 |
Copyright terms: Public domain | W3C validator |