ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vsnid Unicode version

Theorem vsnid 3650
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
vsnid  |-  x  e. 
{ x }

Proof of Theorem vsnid
StepHypRef Expression
1 vex 2763 . 2  |-  x  e. 
_V
21snid 3649 1  |-  x  e. 
{ x }
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by:  rext  4244  snnex  4479  dtruex  4591  fnressn  5744  fressnfv  5745  findcard2d  6947  findcard2sd  6948  diffifi  6950  ac6sfi  6954  fisseneq  6988  finomni  7199  cc2lem  7326  modfsummodlem1  11599  txdis  14445  txdis1cn  14446
  Copyright terms: Public domain W3C validator