ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vsnid Unicode version

Theorem vsnid 3655
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
vsnid  |-  x  e. 
{ x }

Proof of Theorem vsnid
StepHypRef Expression
1 vex 2766 . 2  |-  x  e. 
_V
21snid 3654 1  |-  x  e. 
{ x }
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   {csn 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sn 3629
This theorem is referenced by:  rext  4249  snnex  4484  dtruex  4596  fnressn  5751  fressnfv  5752  findcard2d  6961  findcard2sd  6962  diffifi  6964  ac6sfi  6968  fisseneq  7004  finomni  7215  cc2lem  7349  modfsummodlem1  11638  txdis  14597  txdis1cn  14598
  Copyright terms: Public domain W3C validator