ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vsnid Unicode version

Theorem vsnid 3651
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
vsnid  |-  x  e. 
{ x }

Proof of Theorem vsnid
StepHypRef Expression
1 vex 2763 . 2  |-  x  e. 
_V
21snid 3650 1  |-  x  e. 
{ x }
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3625
This theorem is referenced by:  rext  4245  snnex  4480  dtruex  4592  fnressn  5745  fressnfv  5746  findcard2d  6949  findcard2sd  6950  diffifi  6952  ac6sfi  6956  fisseneq  6990  finomni  7201  cc2lem  7328  modfsummodlem1  11602  txdis  14456  txdis1cn  14457
  Copyright terms: Public domain W3C validator