ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vsnid Unicode version

Theorem vsnid 3621
Description: A setvar variable is a member of its singleton (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
vsnid  |-  x  e. 
{ x }

Proof of Theorem vsnid
StepHypRef Expression
1 vex 2738 . 2  |-  x  e. 
_V
21snid 3620 1  |-  x  e. 
{ x }
Colors of variables: wff set class
Syntax hints:    e. wcel 2146   {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-sn 3595
This theorem is referenced by:  rext  4209  snnex  4442  dtruex  4552  fnressn  5694  fressnfv  5695  findcard2d  6881  findcard2sd  6882  diffifi  6884  ac6sfi  6888  fisseneq  6921  finomni  7128  cc2lem  7240  modfsummodlem1  11432  txdis  13348  txdis1cn  13349
  Copyright terms: Public domain W3C validator