| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > morex | Unicode version | ||
| Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| morex.1 |
|
| morex.2 |
|
| Ref | Expression |
|---|---|
| morex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2490 |
. . . 4
| |
| 2 | exancom 1631 |
. . . 4
| |
| 3 | 1, 2 | bitri 184 |
. . 3
|
| 4 | nfmo1 2066 |
. . . . . 6
| |
| 5 | nfe1 1519 |
. . . . . 6
| |
| 6 | 4, 5 | nfan 1588 |
. . . . 5
|
| 7 | mopick 2132 |
. . . . 5
| |
| 8 | 6, 7 | alrimi 1545 |
. . . 4
|
| 9 | morex.1 |
. . . . 5
| |
| 10 | morex.2 |
. . . . . 6
| |
| 11 | eleq1 2268 |
. . . . . 6
| |
| 12 | 10, 11 | imbi12d 234 |
. . . . 5
|
| 13 | 9, 12 | spcv 2867 |
. . . 4
|
| 14 | 8, 13 | syl 14 |
. . 3
|
| 15 | 3, 14 | sylan2b 287 |
. 2
|
| 16 | 15 | ancoms 268 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |