ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  morex Unicode version

Theorem morex 2944
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
morex.1  |-  B  e. 
_V
morex.2  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
morex  |-  ( ( E. x  e.  A  ph 
/\  E* x ph )  ->  ( ps  ->  B  e.  A ) )
Distinct variable groups:    x, B    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem morex
StepHypRef Expression
1 df-rex 2478 . . . 4  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 exancom 1619 . . . 4  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. x ( ph  /\  x  e.  A )
)
31, 2bitri 184 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ( ph  /\  x  e.  A )
)
4 nfmo1 2054 . . . . . 6  |-  F/ x E* x ph
5 nfe1 1507 . . . . . 6  |-  F/ x E. x ( ph  /\  x  e.  A )
64, 5nfan 1576 . . . . 5  |-  F/ x
( E* x ph  /\ 
E. x ( ph  /\  x  e.  A ) )
7 mopick 2120 . . . . 5  |-  ( ( E* x ph  /\  E. x ( ph  /\  x  e.  A )
)  ->  ( ph  ->  x  e.  A ) )
86, 7alrimi 1533 . . . 4  |-  ( ( E* x ph  /\  E. x ( ph  /\  x  e.  A )
)  ->  A. x
( ph  ->  x  e.  A ) )
9 morex.1 . . . . 5  |-  B  e. 
_V
10 morex.2 . . . . . 6  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
11 eleq1 2256 . . . . . 6  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
1210, 11imbi12d 234 . . . . 5  |-  ( x  =  B  ->  (
( ph  ->  x  e.  A )  <->  ( ps  ->  B  e.  A ) ) )
139, 12spcv 2854 . . . 4  |-  ( A. x ( ph  ->  x  e.  A )  -> 
( ps  ->  B  e.  A ) )
148, 13syl 14 . . 3  |-  ( ( E* x ph  /\  E. x ( ph  /\  x  e.  A )
)  ->  ( ps  ->  B  e.  A ) )
153, 14sylan2b 287 . 2  |-  ( ( E* x ph  /\  E. x  e.  A  ph )  ->  ( ps  ->  B  e.  A ) )
1615ancoms 268 1  |-  ( ( E. x  e.  A  ph 
/\  E* x ph )  ->  ( ps  ->  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E*wmo 2043    e. wcel 2164   E.wrex 2473   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator