| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > morex | Unicode version | ||
| Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| morex.1 |
|
| morex.2 |
|
| Ref | Expression |
|---|---|
| morex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2481 |
. . . 4
| |
| 2 | exancom 1622 |
. . . 4
| |
| 3 | 1, 2 | bitri 184 |
. . 3
|
| 4 | nfmo1 2057 |
. . . . . 6
| |
| 5 | nfe1 1510 |
. . . . . 6
| |
| 6 | 4, 5 | nfan 1579 |
. . . . 5
|
| 7 | mopick 2123 |
. . . . 5
| |
| 8 | 6, 7 | alrimi 1536 |
. . . 4
|
| 9 | morex.1 |
. . . . 5
| |
| 10 | morex.2 |
. . . . . 6
| |
| 11 | eleq1 2259 |
. . . . . 6
| |
| 12 | 10, 11 | imbi12d 234 |
. . . . 5
|
| 13 | 9, 12 | spcv 2858 |
. . . 4
|
| 14 | 8, 13 | syl 14 |
. . 3
|
| 15 | 3, 14 | sylan2b 287 |
. 2
|
| 16 | 15 | ancoms 268 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |