| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > morex | GIF version | ||
| Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) | 
| Ref | Expression | 
|---|---|
| morex.1 | ⊢ 𝐵 ∈ V | 
| morex.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| morex | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rex 2481 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | exancom 1622 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | bitri 184 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) | 
| 4 | nfmo1 2057 | . . . . . 6 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
| 5 | nfe1 1510 | . . . . . 6 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴) | |
| 6 | 4, 5 | nfan 1579 | . . . . 5 ⊢ Ⅎ𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) | 
| 7 | mopick 2123 | . . . . 5 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → (𝜑 → 𝑥 ∈ 𝐴)) | |
| 8 | 6, 7 | alrimi 1536 | . . . 4 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | 
| 9 | morex.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 10 | morex.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 11 | eleq1 2259 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 12 | 10, 11 | imbi12d 234 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝜑 → 𝑥 ∈ 𝐴) ↔ (𝜓 → 𝐵 ∈ 𝐴))) | 
| 13 | 9, 12 | spcv 2858 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) → (𝜓 → 𝐵 ∈ 𝐴)) | 
| 14 | 8, 13 | syl 14 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → (𝜓 → 𝐵 ∈ 𝐴)) | 
| 15 | 3, 14 | sylan2b 287 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) | 
| 16 | 15 | ancoms 268 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃*wmo 2046 ∈ wcel 2167 ∃wrex 2476 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |