ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  morex GIF version

Theorem morex 2956
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
morex.1 𝐵 ∈ V
morex.2 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
morex ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓𝐵𝐴))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem morex
StepHypRef Expression
1 df-rex 2489 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 exancom 1630 . . . 4 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑥(𝜑𝑥𝐴))
31, 2bitri 184 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝜑𝑥𝐴))
4 nfmo1 2065 . . . . . 6 𝑥∃*𝑥𝜑
5 nfe1 1518 . . . . . 6 𝑥𝑥(𝜑𝑥𝐴)
64, 5nfan 1587 . . . . 5 𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴))
7 mopick 2131 . . . . 5 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → (𝜑𝑥𝐴))
86, 7alrimi 1544 . . . 4 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → ∀𝑥(𝜑𝑥𝐴))
9 morex.1 . . . . 5 𝐵 ∈ V
10 morex.2 . . . . . 6 (𝑥 = 𝐵 → (𝜑𝜓))
11 eleq1 2267 . . . . . 6 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
1210, 11imbi12d 234 . . . . 5 (𝑥 = 𝐵 → ((𝜑𝑥𝐴) ↔ (𝜓𝐵𝐴)))
139, 12spcv 2866 . . . 4 (∀𝑥(𝜑𝑥𝐴) → (𝜓𝐵𝐴))
148, 13syl 14 . . 3 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝑥𝐴)) → (𝜓𝐵𝐴))
153, 14sylan2b 287 . 2 ((∃*𝑥𝜑 ∧ ∃𝑥𝐴 𝜑) → (𝜓𝐵𝐴))
1615ancoms 268 1 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370   = wceq 1372  wex 1514  ∃*wmo 2054  wcel 2175  wrex 2484  Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator