| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euxfr2dc | Unicode version | ||
| Description: Transfer existential
uniqueness from a variable |
| Ref | Expression |
|---|---|
| euxfr2dc.1 |
|
| euxfr2dc.2 |
|
| Ref | Expression |
|---|---|
| euxfr2dc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euxfr2dc.2 |
. . . . . . 7
| |
| 2 | 1 | moani 2148 |
. . . . . 6
|
| 3 | ancom 266 |
. . . . . . 7
| |
| 4 | 3 | mobii 2114 |
. . . . . 6
|
| 5 | 2, 4 | mpbi 145 |
. . . . 5
|
| 6 | 5 | ax-gen 1495 |
. . . 4
|
| 7 | excom 1710 |
. . . . . 6
| |
| 8 | 7 | dcbii 845 |
. . . . 5
|
| 9 | 2euswapdc 2169 |
. . . . 5
| |
| 10 | 8, 9 | sylbi 121 |
. . . 4
|
| 11 | 6, 10 | mpi 15 |
. . 3
|
| 12 | moeq 2978 |
. . . . . . 7
| |
| 13 | 12 | moani 2148 |
. . . . . 6
|
| 14 | 3 | mobii 2114 |
. . . . . 6
|
| 15 | 13, 14 | mpbi 145 |
. . . . 5
|
| 16 | 15 | ax-gen 1495 |
. . . 4
|
| 17 | 2euswapdc 2169 |
. . . 4
| |
| 18 | 16, 17 | mpi 15 |
. . 3
|
| 19 | 11, 18 | impbid 129 |
. 2
|
| 20 | euxfr2dc.1 |
. . . 4
| |
| 21 | biidd 172 |
. . . 4
| |
| 22 | 20, 21 | ceqsexv 2839 |
. . 3
|
| 23 | 22 | eubii 2086 |
. 2
|
| 24 | 19, 23 | bitrdi 196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: euxfrdc 2989 |
| Copyright terms: Public domain | W3C validator |