Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euxfr2dc | Unicode version |
Description: Transfer existential uniqueness from a variable to another variable contained in expression . (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
euxfr2dc.1 | |
euxfr2dc.2 |
Ref | Expression |
---|---|
euxfr2dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euxfr2dc.2 | . . . . . . 7 | |
2 | 1 | moani 2084 | . . . . . 6 |
3 | ancom 264 | . . . . . . 7 | |
4 | 3 | mobii 2051 | . . . . . 6 |
5 | 2, 4 | mpbi 144 | . . . . 5 |
6 | 5 | ax-gen 1437 | . . . 4 |
7 | excom 1652 | . . . . . 6 | |
8 | 7 | dcbii 830 | . . . . 5 DECID DECID |
9 | 2euswapdc 2105 | . . . . 5 DECID | |
10 | 8, 9 | sylbi 120 | . . . 4 DECID |
11 | 6, 10 | mpi 15 | . . 3 DECID |
12 | moeq 2901 | . . . . . . 7 | |
13 | 12 | moani 2084 | . . . . . 6 |
14 | 3 | mobii 2051 | . . . . . 6 |
15 | 13, 14 | mpbi 144 | . . . . 5 |
16 | 15 | ax-gen 1437 | . . . 4 |
17 | 2euswapdc 2105 | . . . 4 DECID | |
18 | 16, 17 | mpi 15 | . . 3 DECID |
19 | 11, 18 | impbid 128 | . 2 DECID |
20 | euxfr2dc.1 | . . . 4 | |
21 | biidd 171 | . . . 4 | |
22 | 20, 21 | ceqsexv 2765 | . . 3 |
23 | 22 | eubii 2023 | . 2 |
24 | 19, 23 | bitrdi 195 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 824 wal 1341 wceq 1343 wex 1480 weu 2014 wmo 2015 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: euxfrdc 2912 |
Copyright terms: Public domain | W3C validator |