ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfr2dc Unicode version

Theorem euxfr2dc 2915
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfr2dc.1  |-  A  e. 
_V
euxfr2dc.2  |-  E* y  x  =  A
Assertion
Ref Expression
euxfr2dc  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  <->  E! y ph ) )
Distinct variable groups:    ph, x    x, A
Allowed substitution hints:    ph( y)    A( y)

Proof of Theorem euxfr2dc
StepHypRef Expression
1 euxfr2dc.2 . . . . . . 7  |-  E* y  x  =  A
21moani 2089 . . . . . 6  |-  E* y
( ph  /\  x  =  A )
3 ancom 264 . . . . . . 7  |-  ( (
ph  /\  x  =  A )  <->  ( x  =  A  /\  ph )
)
43mobii 2056 . . . . . 6  |-  ( E* y ( ph  /\  x  =  A )  <->  E* y ( x  =  A  /\  ph )
)
52, 4mpbi 144 . . . . 5  |-  E* y
( x  =  A  /\  ph )
65ax-gen 1442 . . . 4  |-  A. x E* y ( x  =  A  /\  ph )
7 excom 1657 . . . . . 6  |-  ( E. y E. x ( x  =  A  /\  ph )  <->  E. x E. y
( x  =  A  /\  ph ) )
87dcbii 835 . . . . 5  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  <-> DECID  E. x E. y ( x  =  A  /\  ph )
)
9 2euswapdc 2110 . . . . 5  |-  (DECID  E. x E. y ( x  =  A  /\  ph )  ->  ( A. x E* y ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  ->  E! y E. x
( x  =  A  /\  ph ) ) ) )
108, 9sylbi 120 . . . 4  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( A. x E* y ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  ->  E! y E. x
( x  =  A  /\  ph ) ) ) )
116, 10mpi 15 . . 3  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  ->  E! y E. x
( x  =  A  /\  ph ) ) )
12 moeq 2905 . . . . . . 7  |-  E* x  x  =  A
1312moani 2089 . . . . . 6  |-  E* x
( ph  /\  x  =  A )
143mobii 2056 . . . . . 6  |-  ( E* x ( ph  /\  x  =  A )  <->  E* x ( x  =  A  /\  ph )
)
1513, 14mpbi 144 . . . . 5  |-  E* x
( x  =  A  /\  ph )
1615ax-gen 1442 . . . 4  |-  A. y E* x ( x  =  A  /\  ph )
17 2euswapdc 2110 . . . 4  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( A. y E* x ( x  =  A  /\  ph )  ->  ( E! y E. x ( x  =  A  /\  ph )  ->  E! x E. y
( x  =  A  /\  ph ) ) ) )
1816, 17mpi 15 . . 3  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! y E. x ( x  =  A  /\  ph )  ->  E! x E. y
( x  =  A  /\  ph ) ) )
1911, 18impbid 128 . 2  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  <->  E! y E. x ( x  =  A  /\  ph ) ) )
20 euxfr2dc.1 . . . 4  |-  A  e. 
_V
21 biidd 171 . . . 4  |-  ( x  =  A  ->  ( ph 
<-> 
ph ) )
2220, 21ceqsexv 2769 . . 3  |-  ( E. x ( x  =  A  /\  ph )  <->  ph )
2322eubii 2028 . 2  |-  ( E! y E. x ( x  =  A  /\  ph )  <->  E! y ph )
2419, 23bitrdi 195 1  |-  (DECID  E. y E. x ( x  =  A  /\  ph )  ->  ( E! x E. y ( x  =  A  /\  ph )  <->  E! y ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829   A.wal 1346    = wceq 1348   E.wex 1485   E!weu 2019   E*wmo 2020    e. wcel 2141   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  euxfrdc  2916
  Copyright terms: Public domain W3C validator