Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euxfr2dc | Unicode version |
Description: Transfer existential uniqueness from a variable to another variable contained in expression . (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
euxfr2dc.1 | |
euxfr2dc.2 |
Ref | Expression |
---|---|
euxfr2dc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euxfr2dc.2 | . . . . . . 7 | |
2 | 1 | moani 2094 | . . . . . 6 |
3 | ancom 266 | . . . . . . 7 | |
4 | 3 | mobii 2061 | . . . . . 6 |
5 | 2, 4 | mpbi 145 | . . . . 5 |
6 | 5 | ax-gen 1447 | . . . 4 |
7 | excom 1662 | . . . . . 6 | |
8 | 7 | dcbii 840 | . . . . 5 DECID DECID |
9 | 2euswapdc 2115 | . . . . 5 DECID | |
10 | 8, 9 | sylbi 121 | . . . 4 DECID |
11 | 6, 10 | mpi 15 | . . 3 DECID |
12 | moeq 2910 | . . . . . . 7 | |
13 | 12 | moani 2094 | . . . . . 6 |
14 | 3 | mobii 2061 | . . . . . 6 |
15 | 13, 14 | mpbi 145 | . . . . 5 |
16 | 15 | ax-gen 1447 | . . . 4 |
17 | 2euswapdc 2115 | . . . 4 DECID | |
18 | 16, 17 | mpi 15 | . . 3 DECID |
19 | 11, 18 | impbid 129 | . 2 DECID |
20 | euxfr2dc.1 | . . . 4 | |
21 | biidd 172 | . . . 4 | |
22 | 20, 21 | ceqsexv 2774 | . . 3 |
23 | 22 | eubii 2033 | . 2 |
24 | 19, 23 | bitrdi 196 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 DECID wdc 834 wal 1351 wceq 1353 wex 1490 weu 2024 wmo 2025 wcel 2146 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 |
This theorem is referenced by: euxfrdc 2921 |
Copyright terms: Public domain | W3C validator |