| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcv | Unicode version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcgv 2867 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: morex 2964 exmidexmid 4256 exmidsssn 4262 exmidel 4265 rext 4277 ontr2exmid 4591 regexmidlem1 4599 reg2exmid 4602 relop 4846 uchoice 6246 disjxp1 6345 rdgtfr 6483 ssfiexmid 6999 domfiexmid 7001 diffitest 7010 findcard 7011 exmidpw2en 7035 fiintim 7054 fisseneq 7057 finomni 7268 exmidomni 7270 exmidlpo 7271 exmidunben 12912 ivthreinc 15232 bj-d0clsepcl 16060 bj-inf2vnlem1 16105 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |