Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcv | Unicode version |
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcv.1 | |
spcv.2 |
Ref | Expression |
---|---|
spcv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 | |
2 | spcv.2 | . . 3 | |
3 | 2 | spcgv 2813 | . 2 |
4 | 1, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: morex 2910 exmidexmid 4175 exmidsssn 4181 exmidel 4184 rext 4193 ontr2exmid 4502 regexmidlem1 4510 reg2exmid 4513 relop 4754 disjxp1 6204 rdgtfr 6342 ssfiexmid 6842 domfiexmid 6844 diffitest 6853 findcard 6854 fiintim 6894 fisseneq 6897 finomni 7104 exmidomni 7106 exmidlpo 7107 exmidunben 12359 bj-d0clsepcl 13807 bj-inf2vnlem1 13852 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |