| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcv | Unicode version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcgv 2860 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: morex 2957 exmidexmid 4241 exmidsssn 4247 exmidel 4250 rext 4260 ontr2exmid 4574 regexmidlem1 4582 reg2exmid 4585 relop 4829 uchoice 6225 disjxp1 6324 rdgtfr 6462 ssfiexmid 6975 domfiexmid 6977 diffitest 6986 findcard 6987 exmidpw2en 7011 fiintim 7030 fisseneq 7033 finomni 7244 exmidomni 7246 exmidlpo 7247 exmidunben 12830 ivthreinc 15150 bj-d0clsepcl 15898 bj-inf2vnlem1 15943 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |