Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcv | Unicode version |
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcv.1 | |
spcv.2 |
Ref | Expression |
---|---|
spcv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 | |
2 | spcv.2 | . . 3 | |
3 | 2 | spcgv 2817 | . 2 |
4 | 1, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: morex 2914 exmidexmid 4182 exmidsssn 4188 exmidel 4191 rext 4200 ontr2exmid 4509 regexmidlem1 4517 reg2exmid 4520 relop 4761 disjxp1 6215 rdgtfr 6353 ssfiexmid 6854 domfiexmid 6856 diffitest 6865 findcard 6866 fiintim 6906 fisseneq 6909 finomni 7116 exmidomni 7118 exmidlpo 7119 exmidunben 12381 bj-d0clsepcl 13960 bj-inf2vnlem1 14005 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |