| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcv | Unicode version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcgv 2851 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: morex 2948 exmidexmid 4230 exmidsssn 4236 exmidel 4239 rext 4249 ontr2exmid 4562 regexmidlem1 4570 reg2exmid 4573 relop 4817 uchoice 6204 disjxp1 6303 rdgtfr 6441 ssfiexmid 6946 domfiexmid 6948 diffitest 6957 findcard 6958 exmidpw2en 6982 fiintim 7001 fisseneq 7004 finomni 7215 exmidomni 7217 exmidlpo 7218 exmidunben 12668 ivthreinc 14965 bj-d0clsepcl 15655 bj-inf2vnlem1 15700 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |