ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcv Unicode version

Theorem spcv 2832
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
Hypotheses
Ref Expression
spcv.1  |-  A  e. 
_V
spcv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcv  |-  ( A. x ph  ->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem spcv
StepHypRef Expression
1 spcv.1 . 2  |-  A  e. 
_V
2 spcv.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32spcgv 2825 . 2  |-  ( A  e.  _V  ->  ( A. x ph  ->  ps ) )
41, 3ax-mp 5 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   _Vcvv 2738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740
This theorem is referenced by:  morex  2922  exmidexmid  4197  exmidsssn  4203  exmidel  4206  rext  4216  ontr2exmid  4525  regexmidlem1  4533  reg2exmid  4536  relop  4778  disjxp1  6237  rdgtfr  6375  ssfiexmid  6876  domfiexmid  6878  diffitest  6887  findcard  6888  fiintim  6928  fisseneq  6931  finomni  7138  exmidomni  7140  exmidlpo  7141  exmidunben  12427  bj-d0clsepcl  14680  bj-inf2vnlem1  14725  subctctexmid  14753
  Copyright terms: Public domain W3C validator