Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcv | Unicode version |
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcv.1 | |
spcv.2 |
Ref | Expression |
---|---|
spcv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 | |
2 | spcv.2 | . . 3 | |
3 | 2 | spcgv 2822 | . 2 |
4 | 1, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wceq 1353 wcel 2146 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 |
This theorem is referenced by: morex 2919 exmidexmid 4191 exmidsssn 4197 exmidel 4200 rext 4209 ontr2exmid 4518 regexmidlem1 4526 reg2exmid 4529 relop 4770 disjxp1 6227 rdgtfr 6365 ssfiexmid 6866 domfiexmid 6868 diffitest 6877 findcard 6878 fiintim 6918 fisseneq 6921 finomni 7128 exmidomni 7130 exmidlpo 7131 exmidunben 12392 bj-d0clsepcl 14217 bj-inf2vnlem1 14262 subctctexmid 14291 |
Copyright terms: Public domain | W3C validator |