ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcv Unicode version

Theorem spcv 2824
Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
Hypotheses
Ref Expression
spcv.1  |-  A  e. 
_V
spcv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
spcv  |-  ( A. x ph  ->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem spcv
StepHypRef Expression
1 spcv.1 . 2  |-  A  e. 
_V
2 spcv.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32spcgv 2817 . 2  |-  ( A  e.  _V  ->  ( A. x ph  ->  ps ) )
41, 3ax-mp 5 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348    e. wcel 2141   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  morex  2914  exmidexmid  4182  exmidsssn  4188  exmidel  4191  rext  4200  ontr2exmid  4509  regexmidlem1  4517  reg2exmid  4520  relop  4761  disjxp1  6215  rdgtfr  6353  ssfiexmid  6854  domfiexmid  6856  diffitest  6865  findcard  6866  fiintim  6906  fisseneq  6909  finomni  7116  exmidomni  7118  exmidlpo  7119  exmidunben  12381  bj-d0clsepcl  13960  bj-inf2vnlem1  14005  subctctexmid  14034
  Copyright terms: Public domain W3C validator