| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcv | Unicode version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcgv 2890 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: morex 2987 exmidexmid 4280 exmidsssn 4286 exmidel 4289 rext 4301 ontr2exmid 4617 regexmidlem1 4625 reg2exmid 4628 relop 4872 uchoice 6283 disjxp1 6382 rdgtfr 6520 ssfiexmid 7038 domfiexmid 7040 diffitest 7049 findcard 7050 exmidpw2en 7074 fiintim 7093 fisseneq 7096 finomni 7307 exmidomni 7309 exmidlpo 7310 exmidunben 12997 ivthreinc 15319 bj-d0clsepcl 16288 bj-inf2vnlem1 16333 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |