| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcv | Unicode version | ||
| Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcv.1 |
|
| spcv.2 |
|
| Ref | Expression |
|---|---|
| spcv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 |
. 2
| |
| 2 | spcv.2 |
. . 3
| |
| 3 | 2 | spcgv 2860 |
. 2
|
| 4 | 1, 3 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: morex 2957 exmidexmid 4240 exmidsssn 4246 exmidel 4249 rext 4259 ontr2exmid 4573 regexmidlem1 4581 reg2exmid 4584 relop 4828 uchoice 6223 disjxp1 6322 rdgtfr 6460 ssfiexmid 6973 domfiexmid 6975 diffitest 6984 findcard 6985 exmidpw2en 7009 fiintim 7028 fisseneq 7031 finomni 7242 exmidomni 7244 exmidlpo 7245 exmidunben 12797 ivthreinc 15117 bj-d0clsepcl 15861 bj-inf2vnlem1 15906 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |