Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mosn | GIF version |
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3693 and snprc 3640. (Contributed by Jim Kingdon, 30-Aug-2018.) |
Ref | Expression |
---|---|
mosn | ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 2900 | . 2 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
2 | velsn 3592 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | 2 | mobii 2051 | . 2 ⊢ (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴) |
4 | 1, 3 | mpbir 145 | 1 ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∃*wmo 2015 ∈ wcel 2136 {csn 3575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-sn 3581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |