![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mosn | GIF version |
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3712 and snprc 3659. (Contributed by Jim Kingdon, 30-Aug-2018.) |
Ref | Expression |
---|---|
mosn | ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 2914 | . 2 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
2 | velsn 3611 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | 2 | mobii 2063 | . 2 ⊢ (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴) |
4 | 1, 3 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∃*wmo 2027 ∈ wcel 2148 {csn 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-sn 3600 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |