Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mosn | GIF version |
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3702 and snprc 3649. (Contributed by Jim Kingdon, 30-Aug-2018.) |
Ref | Expression |
---|---|
mosn | ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 2906 | . 2 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
2 | velsn 3601 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | 2 | mobii 2057 | . 2 ⊢ (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴) |
4 | 1, 3 | mpbir 145 | 1 ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1349 ∃*wmo 2021 ∈ wcel 2142 {csn 3584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-ext 2153 |
This theorem depends on definitions: df-bi 116 df-tru 1352 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-v 2733 df-sn 3590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |