ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosn GIF version

Theorem mosn 3658
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3740 and snprc 3687. (Contributed by Jim Kingdon, 30-Aug-2018.)
Assertion
Ref Expression
mosn ∃*𝑥 𝑥 ∈ {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem mosn
StepHypRef Expression
1 moeq 2939 . 2 ∃*𝑥 𝑥 = 𝐴
2 velsn 3639 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32mobii 2082 . 2 (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴)
41, 3mpbir 146 1 ∃*𝑥 𝑥 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ∃*wmo 2046  wcel 2167  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator