| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mosn | GIF version | ||
| Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3784 and snprc 3731. (Contributed by Jim Kingdon, 30-Aug-2018.) |
| Ref | Expression |
|---|---|
| mosn | ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq 2978 | . 2 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
| 2 | velsn 3683 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | 2 | mobii 2114 | . 2 ⊢ (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∃*wmo 2078 ∈ wcel 2200 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sn 3672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |