ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosn GIF version

Theorem mosn 3611
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3693 and snprc 3640. (Contributed by Jim Kingdon, 30-Aug-2018.)
Assertion
Ref Expression
mosn ∃*𝑥 𝑥 ∈ {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem mosn
StepHypRef Expression
1 moeq 2900 . 2 ∃*𝑥 𝑥 = 𝐴
2 velsn 3592 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32mobii 2051 . 2 (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴)
41, 3mpbir 145 1 ∃*𝑥 𝑥 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  ∃*wmo 2015  wcel 2136  {csn 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-sn 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator