ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosn GIF version

Theorem mosn 3620
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3702 and snprc 3649. (Contributed by Jim Kingdon, 30-Aug-2018.)
Assertion
Ref Expression
mosn ∃*𝑥 𝑥 ∈ {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem mosn
StepHypRef Expression
1 moeq 2906 . 2 ∃*𝑥 𝑥 = 𝐴
2 velsn 3601 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32mobii 2057 . 2 (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴)
41, 3mpbir 145 1 ∃*𝑥 𝑥 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1349  ∃*wmo 2021  wcel 2142  {csn 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-ext 2153
This theorem depends on definitions:  df-bi 116  df-tru 1352  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-v 2733  df-sn 3590
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator