ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosn GIF version

Theorem mosn 3654
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3736 and snprc 3683. (Contributed by Jim Kingdon, 30-Aug-2018.)
Assertion
Ref Expression
mosn ∃*𝑥 𝑥 ∈ {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem mosn
StepHypRef Expression
1 moeq 2935 . 2 ∃*𝑥 𝑥 = 𝐴
2 velsn 3635 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32mobii 2079 . 2 (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴)
41, 3mpbir 146 1 ∃*𝑥 𝑥 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ∃*wmo 2043  wcel 2164  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sn 3624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator