ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosn GIF version

Theorem mosn 3674
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3756 and snprc 3703. (Contributed by Jim Kingdon, 30-Aug-2018.)
Assertion
Ref Expression
mosn ∃*𝑥 𝑥 ∈ {𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem mosn
StepHypRef Expression
1 moeq 2952 . 2 ∃*𝑥 𝑥 = 𝐴
2 velsn 3655 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
32mobii 2092 . 2 (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴)
41, 3mpbir 146 1 ∃*𝑥 𝑥 ∈ {𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  ∃*wmo 2056  wcel 2177  {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sn 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator