| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mosn | GIF version | ||
| Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3740 and snprc 3687. (Contributed by Jim Kingdon, 30-Aug-2018.) |
| Ref | Expression |
|---|---|
| mosn | ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq 2939 | . 2 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
| 2 | velsn 3639 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | 2 | mobii 2082 | . 2 ⊢ (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 {csn 3622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |