![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mosn | GIF version |
Description: A singleton has at most one element. This works whether 𝐴 is a proper class or not, and in that sense can be seen as encompassing both snmg 3736 and snprc 3683. (Contributed by Jim Kingdon, 30-Aug-2018.) |
Ref | Expression |
---|---|
mosn | ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 2935 | . 2 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
2 | velsn 3635 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
3 | 2 | mobii 2079 | . 2 ⊢ (∃*𝑥 𝑥 ∈ {𝐴} ↔ ∃*𝑥 𝑥 = 𝐴) |
4 | 1, 3 | mpbir 146 | 1 ⊢ ∃*𝑥 𝑥 ∈ {𝐴} |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∃*wmo 2043 ∈ wcel 2164 {csn 3618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sn 3624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |