Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > velsn | Unicode version |
Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
velsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . 2 | |
2 | 1 | elsn 3592 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1343 wcel 2136 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-sn 3582 |
This theorem is referenced by: dfpr2 3595 mosn 3612 ralsnsg 3613 ralsns 3614 rexsns 3615 disjsn 3638 snprc 3641 euabsn2 3645 prmg 3697 snss 3702 difprsnss 3711 eqsnm 3735 snsssn 3741 snsspw 3744 dfnfc2 3807 uni0b 3814 uni0c 3815 sndisj 3978 unidif0 4146 exmid01 4177 rext 4193 exss 4205 frirrg 4328 ordsucim 4477 ordtriexmidlem 4496 ordtri2or2exmidlem 4503 onsucelsucexmidlem 4506 elirr 4518 sucprcreg 4526 fconstmpt 4651 opeliunxp 4659 dmsnopg 5075 dfmpt3 5310 nfunsn 5520 fsn 5657 fnasrn 5663 fnasrng 5665 fconstfvm 5703 eusvobj2 5828 opabex3d 6089 opabex3 6090 dcdifsnid 6472 ecexr 6506 ixp0x 6692 xpsnen 6787 fidifsnen 6836 difinfsn 7065 exmidonfinlem 7149 iccid 9861 fzsn 10001 fzpr 10012 fzdifsuc 10016 fsum2dlemstep 11375 prodsnf 11533 fprod1p 11540 fprodunsn 11545 fprod2dlemstep 11563 ef0lem 11601 1nprm 12046 mgmidsssn0 12615 restsn 12820 |
Copyright terms: Public domain | W3C validator |