| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velsn | Unicode version | ||
| Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| velsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. 2
| |
| 2 | 1 | elsn 3659 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-sn 3649 |
| This theorem is referenced by: dfpr2 3662 mosn 3679 ralsnsg 3680 ralsns 3681 rexsns 3682 disjsn 3705 snprc 3708 euabsn2 3712 snmb 3764 prmg 3765 snssOLD 3770 snssb 3777 difprsnss 3782 eqsnm 3809 snsssn 3815 snsspw 3818 dfnfc2 3882 uni0b 3889 uni0c 3890 sndisj 4055 unidif0 4227 exmid01 4258 rext 4277 exss 4289 frirrg 4415 ordsucim 4566 ordtriexmidlem 4585 ordtri2or2exmidlem 4592 onsucelsucexmidlem 4595 elirr 4607 sucprcreg 4615 fconstmpt 4740 opeliunxp 4748 restidsing 5034 dmsnopg 5173 dfmpt3 5418 nfunsn 5634 fsn 5775 fnasrn 5781 fnasrng 5783 fconstfvm 5825 eusvobj2 5953 opabex3d 6229 opabex3 6230 dcdifsnid 6613 ecexr 6648 ixp0x 6836 xpsnen 6941 fidifsnen 6993 difinfsn 7228 exmidonfinlem 7332 iccid 10082 fzsn 10223 fzpr 10234 fzdifsuc 10238 fsum2dlemstep 11860 prodsnf 12018 fprod1p 12025 fprodunsn 12030 fprod2dlemstep 12048 ef0lem 12086 1nprm 12551 mgmidsssn0 13331 mnd1id 13403 0subm 13431 trivsubgsnd 13652 kerf1ghm 13725 mulgrhm2 14487 restsn 14767 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |