| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > velsn | Unicode version | ||
| Description: There is only one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| velsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. 2
| |
| 2 | 1 | elsn 3639 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sn 3629 |
| This theorem is referenced by: dfpr2 3642 mosn 3659 ralsnsg 3660 ralsns 3661 rexsns 3662 disjsn 3685 snprc 3688 euabsn2 3692 prmg 3744 snssOLD 3749 snssb 3756 difprsnss 3761 eqsnm 3786 snsssn 3792 snsspw 3795 dfnfc2 3858 uni0b 3865 uni0c 3866 sndisj 4030 unidif0 4201 exmid01 4232 rext 4249 exss 4261 frirrg 4386 ordsucim 4537 ordtriexmidlem 4556 ordtri2or2exmidlem 4563 onsucelsucexmidlem 4566 elirr 4578 sucprcreg 4586 fconstmpt 4711 opeliunxp 4719 restidsing 5003 dmsnopg 5142 dfmpt3 5383 nfunsn 5596 fsn 5737 fnasrn 5743 fnasrng 5745 fconstfvm 5783 eusvobj2 5911 opabex3d 6187 opabex3 6188 dcdifsnid 6571 ecexr 6606 ixp0x 6794 xpsnen 6889 fidifsnen 6940 difinfsn 7175 exmidonfinlem 7272 iccid 10017 fzsn 10158 fzpr 10169 fzdifsuc 10173 fsum2dlemstep 11616 prodsnf 11774 fprod1p 11781 fprodunsn 11786 fprod2dlemstep 11804 ef0lem 11842 1nprm 12307 mgmidsssn0 13086 mnd1id 13158 0subm 13186 trivsubgsnd 13407 kerf1ghm 13480 mulgrhm2 14242 restsn 14500 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |