ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsnsg Unicode version

Theorem ralsnsg 3620
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
ralsnsg  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ralsnsg
StepHypRef Expression
1 df-ral 2453 . . 3  |-  ( A. x  e.  { A } ph  <->  A. x ( x  e.  { A }  ->  ph ) )
2 velsn 3600 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
32imbi1i 237 . . . 4  |-  ( ( x  e.  { A }  ->  ph )  <->  ( x  =  A  ->  ph )
)
43albii 1463 . . 3  |-  ( A. x ( x  e. 
{ A }  ->  ph )  <->  A. x ( x  =  A  ->  ph )
)
51, 4bitri 183 . 2  |-  ( A. x  e.  { A } ph  <->  A. x ( x  =  A  ->  ph )
)
6 sbc6g 2979 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
75, 6bitr4id 198 1  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448   [.wsbc 2955   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-sbc 2956  df-sn 3589
This theorem is referenced by:  ixpsnval  6679  ac6sfi  6876  dcfi  6958  rexfiuz  10953  prmind2  12074
  Copyright terms: Public domain W3C validator