ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsnsg Unicode version

Theorem ralsnsg 3670
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
ralsnsg  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ralsnsg
StepHypRef Expression
1 df-ral 2489 . . 3  |-  ( A. x  e.  { A } ph  <->  A. x ( x  e.  { A }  ->  ph ) )
2 velsn 3650 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
32imbi1i 238 . . . 4  |-  ( ( x  e.  { A }  ->  ph )  <->  ( x  =  A  ->  ph )
)
43albii 1493 . . 3  |-  ( A. x ( x  e. 
{ A }  ->  ph )  <->  A. x ( x  =  A  ->  ph )
)
51, 4bitri 184 . 2  |-  ( A. x  e.  { A } ph  <->  A. x ( x  =  A  ->  ph )
)
6 sbc6g 3023 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
) )
75, 6bitr4id 199 1  |-  ( A  e.  V  ->  ( A. x  e.  { A } ph  <->  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2176   A.wral 2484   [.wsbc 2998   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-sbc 2999  df-sn 3639
This theorem is referenced by:  ixpsnval  6788  ac6sfi  6995  rexfiuz  11300  prmind2  12442
  Copyright terms: Public domain W3C validator