| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 |
|
| mpd3an3.3 |
|
| Ref | Expression |
|---|---|
| mpd3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 |
. 2
| |
| 2 | mpd3an3.3 |
. . 3
| |
| 3 | 2 | 3expa 1227 |
. 2
|
| 4 | 1, 3 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: stoic2b 1472 elovmpo 6203 oav 6598 omv 6599 oeiv 6600 f1oeng 6906 mulpipq2 7554 ltrnqg 7603 genipv 7692 subval 8334 subap0 8786 xaddval 10037 fzrevral3 10299 fzoval 10340 subsq2 10864 bcval 10966 ccatws1ls 11168 swrdrlen 11188 pfxpfxid 11236 pfxcctswrd 11237 dvdsmul1 12319 dvdsmul2 12320 gcdval 12475 eucalgval2 12570 setsvalg 13057 restval 13273 xpsfval 13376 imasmnd2 13480 ismhm 13489 mhmex 13490 subsubm 13511 subsubg 13729 qusinv 13768 isghm 13775 ghminv 13782 rngrz 13904 srglmhm 13951 ringrz 14002 imasring 14022 isrhm 14116 01eq0ring 14147 restin 14844 hmeofvalg 14971 cncfval 15240 rpcxpef 15562 rpcxpneg 15575 sgmval 15651 fsumdvdsmul 15659 lgsval 15677 2lgsoddprmlem4 15785 |
| Copyright terms: Public domain | W3C validator |