| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 |
|
| mpd3an3.3 |
|
| Ref | Expression |
|---|---|
| mpd3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 |
. 2
| |
| 2 | mpd3an3.3 |
. . 3
| |
| 3 | 2 | 3expa 1206 |
. 2
|
| 4 | 1, 3 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: stoic2b 1450 elovmpo 6163 oav 6558 omv 6559 oeiv 6560 f1oeng 6866 mulpipq2 7514 ltrnqg 7563 genipv 7652 subval 8294 subap0 8746 xaddval 9997 fzrevral3 10259 fzoval 10300 subsq2 10824 bcval 10926 ccatws1ls 11127 swrdrlen 11147 pfxpfxid 11195 pfxcctswrd 11196 dvdsmul1 12209 dvdsmul2 12210 gcdval 12365 eucalgval2 12460 setsvalg 12947 restval 13162 xpsfval 13265 imasmnd2 13369 ismhm 13378 mhmex 13379 subsubm 13400 subsubg 13618 qusinv 13657 isghm 13664 ghminv 13671 rngrz 13793 srglmhm 13840 ringrz 13891 imasring 13911 isrhm 14005 01eq0ring 14036 restin 14733 hmeofvalg 14860 cncfval 15129 rpcxpef 15451 rpcxpneg 15464 sgmval 15540 fsumdvdsmul 15548 lgsval 15566 2lgsoddprmlem4 15674 |
| Copyright terms: Public domain | W3C validator |