| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 |
|
| mpd3an3.3 |
|
| Ref | Expression |
|---|---|
| mpd3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 |
. 2
| |
| 2 | mpd3an3.3 |
. . 3
| |
| 3 | 2 | 3expa 1206 |
. 2
|
| 4 | 1, 3 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: stoic2b 1450 elovmpo 6145 oav 6540 omv 6541 oeiv 6542 f1oeng 6848 mulpipq2 7484 ltrnqg 7533 genipv 7622 subval 8264 subap0 8716 xaddval 9967 fzrevral3 10229 fzoval 10270 subsq2 10792 bcval 10894 ccatws1ls 11094 swrdrlen 11114 dvdsmul1 12124 dvdsmul2 12125 gcdval 12280 eucalgval2 12375 setsvalg 12862 restval 13077 xpsfval 13180 imasmnd2 13284 ismhm 13293 mhmex 13294 subsubm 13315 subsubg 13533 qusinv 13572 isghm 13579 ghminv 13586 rngrz 13708 srglmhm 13755 ringrz 13806 imasring 13826 isrhm 13920 01eq0ring 13951 restin 14648 hmeofvalg 14775 cncfval 15044 rpcxpef 15366 rpcxpneg 15379 sgmval 15455 fsumdvdsmul 15463 lgsval 15481 2lgsoddprmlem4 15589 |
| Copyright terms: Public domain | W3C validator |