| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 |
|
| mpd3an3.3 |
|
| Ref | Expression |
|---|---|
| mpd3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 |
. 2
| |
| 2 | mpd3an3.3 |
. . 3
| |
| 3 | 2 | 3expa 1205 |
. 2
|
| 4 | 1, 3 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: stoic2b 1449 elovmpo 6144 oav 6539 omv 6540 oeiv 6541 f1oeng 6847 mulpipq2 7483 ltrnqg 7532 genipv 7621 subval 8263 subap0 8715 xaddval 9966 fzrevral3 10228 fzoval 10269 subsq2 10790 bcval 10892 dvdsmul1 12066 dvdsmul2 12067 gcdval 12222 eucalgval2 12317 setsvalg 12804 restval 13019 xpsfval 13122 imasmnd2 13226 ismhm 13235 mhmex 13236 subsubm 13257 subsubg 13475 qusinv 13514 isghm 13521 ghminv 13528 rngrz 13650 srglmhm 13697 ringrz 13748 imasring 13768 isrhm 13862 01eq0ring 13893 restin 14590 hmeofvalg 14717 cncfval 14986 rpcxpef 15308 rpcxpneg 15321 sgmval 15397 fsumdvdsmul 15405 lgsval 15423 2lgsoddprmlem4 15531 |
| Copyright terms: Public domain | W3C validator |