| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 |
|
| mpd3an3.3 |
|
| Ref | Expression |
|---|---|
| mpd3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 |
. 2
| |
| 2 | mpd3an3.3 |
. . 3
| |
| 3 | 2 | 3expa 1205 |
. 2
|
| 4 | 1, 3 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: stoic2b 1441 elovmpo 6122 oav 6512 omv 6513 oeiv 6514 f1oeng 6816 mulpipq2 7438 ltrnqg 7487 genipv 7576 subval 8218 subap0 8670 xaddval 9920 fzrevral3 10182 fzoval 10223 subsq2 10739 bcval 10841 dvdsmul1 11978 dvdsmul2 11979 gcdval 12126 eucalgval2 12221 setsvalg 12708 restval 12916 xpsfval 12991 ismhm 13093 mhmex 13094 subsubm 13115 subsubg 13327 qusinv 13366 isghm 13373 ghminv 13380 rngrz 13502 srglmhm 13549 ringrz 13600 imasring 13620 isrhm 13714 01eq0ring 13745 restin 14412 hmeofvalg 14539 cncfval 14808 rpcxpef 15130 rpcxpneg 15143 sgmval 15219 fsumdvdsmul 15227 lgsval 15245 2lgsoddprmlem4 15353 |
| Copyright terms: Public domain | W3C validator |