| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an3 | Unicode version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 |
|
| mpd3an3.3 |
|
| Ref | Expression |
|---|---|
| mpd3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 |
. 2
| |
| 2 | mpd3an3.3 |
. . 3
| |
| 3 | 2 | 3expa 1205 |
. 2
|
| 4 | 1, 3 | mpdan 421 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: stoic2b 1449 elovmpo 6144 oav 6539 omv 6540 oeiv 6541 f1oeng 6847 mulpipq2 7483 ltrnqg 7532 genipv 7621 subval 8263 subap0 8715 xaddval 9966 fzrevral3 10228 fzoval 10269 subsq2 10790 bcval 10892 ccatws1ls 11092 dvdsmul1 12095 dvdsmul2 12096 gcdval 12251 eucalgval2 12346 setsvalg 12833 restval 13048 xpsfval 13151 imasmnd2 13255 ismhm 13264 mhmex 13265 subsubm 13286 subsubg 13504 qusinv 13543 isghm 13550 ghminv 13557 rngrz 13679 srglmhm 13726 ringrz 13777 imasring 13797 isrhm 13891 01eq0ring 13922 restin 14619 hmeofvalg 14746 cncfval 15015 rpcxpef 15337 rpcxpneg 15350 sgmval 15426 fsumdvdsmul 15434 lgsval 15452 2lgsoddprmlem4 15560 |
| Copyright terms: Public domain | W3C validator |