ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvds Unicode version

Theorem pw2dvds 12674
Description: A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvds  |-  ( N  e.  NN  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
Distinct variable group:    m, N

Proof of Theorem pw2dvds
StepHypRef Expression
1 id 19 . 2  |-  ( N  e.  NN  ->  N  e.  NN )
2 2nn 9260 . . . 4  |-  2  e.  NN
3 nnnn0 9364 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
4 nnexpcl 10761 . . . 4  |-  ( ( 2  e.  NN  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  NN )
52, 3, 4sylancr 414 . . 3  |-  ( N  e.  NN  ->  (
2 ^ N )  e.  NN )
6 1zzd 9461 . . . 4  |-  ( N  e.  NN  ->  1  e.  ZZ )
7 2z 9462 . . . . . 6  |-  2  e.  ZZ
8 zexpcl 10763 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  ZZ )
97, 3, 8sylancr 414 . . . . 5  |-  ( N  e.  NN  ->  (
2 ^ N )  e.  ZZ )
109, 6zsubcld 9562 . . . 4  |-  ( N  e.  NN  ->  (
( 2 ^ N
)  -  1 )  e.  ZZ )
11 nnz 9453 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
12 nnge1 9121 . . . 4  |-  ( N  e.  NN  ->  1  <_  N )
13 uzid 9724 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
147, 13ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
15 bernneq3 10871 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( 2 ^ N
) )
1614, 3, 15sylancr 414 . . . . 5  |-  ( N  e.  NN  ->  N  <  ( 2 ^ N
) )
17 zltlem1 9492 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( 2 ^ N
)  e.  ZZ )  ->  ( N  < 
( 2 ^ N
)  <->  N  <_  ( ( 2 ^ N )  -  1 ) ) )
1811, 9, 17syl2anc 411 . . . . 5  |-  ( N  e.  NN  ->  ( N  <  ( 2 ^ N )  <->  N  <_  ( ( 2 ^ N
)  -  1 ) ) )
1916, 18mpbid 147 . . . 4  |-  ( N  e.  NN  ->  N  <_  ( ( 2 ^ N )  -  1 ) )
20 elfz4 10202 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  ( ( 2 ^ N )  -  1 )  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  ( ( 2 ^ N )  -  1 ) ) )  ->  N  e.  ( 1 ... (
( 2 ^ N
)  -  1 ) ) )
216, 10, 11, 12, 19, 20syl32anc 1279 . . 3  |-  ( N  e.  NN  ->  N  e.  ( 1 ... (
( 2 ^ N
)  -  1 ) ) )
22 fzm1ndvds 12353 . . 3  |-  ( ( ( 2 ^ N
)  e.  NN  /\  N  e.  ( 1 ... ( ( 2 ^ N )  - 
1 ) ) )  ->  -.  ( 2 ^ N )  ||  N )
235, 21, 22syl2anc 411 . 2  |-  ( N  e.  NN  ->  -.  ( 2 ^ N
)  ||  N )
24 pw2dvdslemn 12673 . 2  |-  ( ( N  e.  NN  /\  N  e.  NN  /\  -.  ( 2 ^ N
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
251, 23, 24mpd3an23 1373 1  |-  ( N  e.  NN  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   E.wrex 2509   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   1c1 7988    + caddc 7990    < clt 8169    <_ cle 8170    - cmin 8305   NNcn 9098   2c2 9149   NN0cn0 9357   ZZcz 9434   ZZ>=cuz 9710   ...cfz 10192   ^cexp 10747    || cdvds 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-dvds 12285
This theorem is referenced by:  pw2dvdseu  12676  oddpwdclemdvds  12678  oddpwdclemndvds  12679
  Copyright terms: Public domain W3C validator