ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvds Unicode version

Theorem pw2dvds 12304
Description: A natural number has a highest power of two which divides it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvds  |-  ( N  e.  NN  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
Distinct variable group:    m, N

Proof of Theorem pw2dvds
StepHypRef Expression
1 id 19 . 2  |-  ( N  e.  NN  ->  N  e.  NN )
2 2nn 9143 . . . 4  |-  2  e.  NN
3 nnnn0 9247 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
4 nnexpcl 10623 . . . 4  |-  ( ( 2  e.  NN  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  NN )
52, 3, 4sylancr 414 . . 3  |-  ( N  e.  NN  ->  (
2 ^ N )  e.  NN )
6 1zzd 9344 . . . 4  |-  ( N  e.  NN  ->  1  e.  ZZ )
7 2z 9345 . . . . . 6  |-  2  e.  ZZ
8 zexpcl 10625 . . . . . 6  |-  ( ( 2  e.  ZZ  /\  N  e.  NN0 )  -> 
( 2 ^ N
)  e.  ZZ )
97, 3, 8sylancr 414 . . . . 5  |-  ( N  e.  NN  ->  (
2 ^ N )  e.  ZZ )
109, 6zsubcld 9444 . . . 4  |-  ( N  e.  NN  ->  (
( 2 ^ N
)  -  1 )  e.  ZZ )
11 nnz 9336 . . . 4  |-  ( N  e.  NN  ->  N  e.  ZZ )
12 nnge1 9005 . . . 4  |-  ( N  e.  NN  ->  1  <_  N )
13 uzid 9606 . . . . . . 7  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
147, 13ax-mp 5 . . . . . 6  |-  2  e.  ( ZZ>= `  2 )
15 bernneq3 10733 . . . . . 6  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  N  <  ( 2 ^ N
) )
1614, 3, 15sylancr 414 . . . . 5  |-  ( N  e.  NN  ->  N  <  ( 2 ^ N
) )
17 zltlem1 9374 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( 2 ^ N
)  e.  ZZ )  ->  ( N  < 
( 2 ^ N
)  <->  N  <_  ( ( 2 ^ N )  -  1 ) ) )
1811, 9, 17syl2anc 411 . . . . 5  |-  ( N  e.  NN  ->  ( N  <  ( 2 ^ N )  <->  N  <_  ( ( 2 ^ N
)  -  1 ) ) )
1916, 18mpbid 147 . . . 4  |-  ( N  e.  NN  ->  N  <_  ( ( 2 ^ N )  -  1 ) )
20 elfz4 10084 . . . 4  |-  ( ( ( 1  e.  ZZ  /\  ( ( 2 ^ N )  -  1 )  e.  ZZ  /\  N  e.  ZZ )  /\  ( 1  <_  N  /\  N  <_  ( ( 2 ^ N )  -  1 ) ) )  ->  N  e.  ( 1 ... (
( 2 ^ N
)  -  1 ) ) )
216, 10, 11, 12, 19, 20syl32anc 1257 . . 3  |-  ( N  e.  NN  ->  N  e.  ( 1 ... (
( 2 ^ N
)  -  1 ) ) )
22 fzm1ndvds 11998 . . 3  |-  ( ( ( 2 ^ N
)  e.  NN  /\  N  e.  ( 1 ... ( ( 2 ^ N )  - 
1 ) ) )  ->  -.  ( 2 ^ N )  ||  N )
235, 21, 22syl2anc 411 . 2  |-  ( N  e.  NN  ->  -.  ( 2 ^ N
)  ||  N )
24 pw2dvdslemn 12303 . 2  |-  ( ( N  e.  NN  /\  N  e.  NN  /\  -.  ( 2 ^ N
)  ||  N )  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  +  1 ) )  ||  N
) )
251, 23, 24mpd3an23 1350 1  |-  ( N  e.  NN  ->  E. m  e.  NN0  ( ( 2 ^ m )  ||  N  /\  -.  ( 2 ^ ( m  + 
1 ) )  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   E.wrex 2473   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1c1 7873    + caddc 7875    < clt 8054    <_ cle 8055    - cmin 8190   NNcn 8982   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074   ^cexp 10609    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by:  pw2dvdseu  12306  oddpwdclemdvds  12308  oddpwdclemndvds  12309
  Copyright terms: Public domain W3C validator