ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccl Unicode version

Theorem bccl 10680
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
bccl  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )

Proof of Theorem bccl
Dummy variables  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5849 . . . . 5  |-  ( m  =  0  ->  (
m  _C  k )  =  ( 0  _C  k ) )
21eleq1d 2235 . . . 4  |-  ( m  =  0  ->  (
( m  _C  k
)  e.  NN0  <->  ( 0  _C  k )  e. 
NN0 ) )
32ralbidv 2466 . . 3  |-  ( m  =  0  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( 0  _C  k )  e.  NN0 ) )
4 oveq1 5849 . . . . 5  |-  ( m  =  n  ->  (
m  _C  k )  =  ( n  _C  k ) )
54eleq1d 2235 . . . 4  |-  ( m  =  n  ->  (
( m  _C  k
)  e.  NN0  <->  ( n  _C  k )  e.  NN0 ) )
65ralbidv 2466 . . 3  |-  ( m  =  n  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( n  _C  k )  e.  NN0 ) )
7 oveq1 5849 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
m  _C  k )  =  ( ( n  +  1 )  _C  k ) )
87eleq1d 2235 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( m  _C  k
)  e.  NN0  <->  ( (
n  +  1 )  _C  k )  e. 
NN0 ) )
98ralbidv 2466 . . 3  |-  ( m  =  ( n  + 
1 )  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
10 oveq1 5849 . . . . 5  |-  ( m  =  N  ->  (
m  _C  k )  =  ( N  _C  k ) )
1110eleq1d 2235 . . . 4  |-  ( m  =  N  ->  (
( m  _C  k
)  e.  NN0  <->  ( N  _C  k )  e.  NN0 ) )
1211ralbidv 2466 . . 3  |-  ( m  =  N  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( N  _C  k )  e.  NN0 ) )
13 elfz1eq 9970 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
1413adantl 275 . . . . . 6  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  k  =  0 )
15 oveq2 5850 . . . . . . 7  |-  ( k  =  0  ->  (
0  _C  k )  =  ( 0  _C  0 ) )
16 0nn0 9129 . . . . . . . . 9  |-  0  e.  NN0
17 bcn0 10668 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
1816, 17ax-mp 5 . . . . . . . 8  |-  ( 0  _C  0 )  =  1
19 1nn0 9130 . . . . . . . 8  |-  1  e.  NN0
2018, 19eqeltri 2239 . . . . . . 7  |-  ( 0  _C  0 )  e. 
NN0
2115, 20eqeltrdi 2257 . . . . . 6  |-  ( k  =  0  ->  (
0  _C  k )  e.  NN0 )
2214, 21syl 14 . . . . 5  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  e.  NN0 )
23 bcval3 10664 . . . . . . 7  |-  ( ( 0  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
2416, 23mp3an1 1314 . . . . . 6  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
2524, 16eqeltrdi 2257 . . . . 5  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  e.  NN0 )
26 0zd 9203 . . . . . 6  |-  ( k  e.  ZZ  ->  0  e.  ZZ )
27 fzdcel 9975 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  0  e.  ZZ )  -> DECID  k  e.  (
0 ... 0 ) )
28 exmiddc 826 . . . . . . 7  |-  (DECID  k  e.  ( 0 ... 0
)  ->  ( k  e.  ( 0 ... 0
)  \/  -.  k  e.  ( 0 ... 0
) ) )
2927, 28syl 14 . . . . . 6  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  0  e.  ZZ )  ->  (
k  e.  ( 0 ... 0 )  \/ 
-.  k  e.  ( 0 ... 0 ) ) )
3026, 26, 29mpd3an23 1329 . . . . 5  |-  ( k  e.  ZZ  ->  (
k  e.  ( 0 ... 0 )  \/ 
-.  k  e.  ( 0 ... 0 ) ) )
3122, 25, 30mpjaodan 788 . . . 4  |-  ( k  e.  ZZ  ->  (
0  _C  k )  e.  NN0 )
3231rgen 2519 . . 3  |-  A. k  e.  ZZ  ( 0  _C  k )  e.  NN0
33 oveq2 5850 . . . . . 6  |-  ( k  =  m  ->  (
n  _C  k )  =  ( n  _C  m ) )
3433eleq1d 2235 . . . . 5  |-  ( k  =  m  ->  (
( n  _C  k
)  e.  NN0  <->  ( n  _C  m )  e.  NN0 ) )
3534cbvralv 2692 . . . 4  |-  ( A. k  e.  ZZ  (
n  _C  k )  e.  NN0  <->  A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )
36 bcpasc 10679 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  ( k  -  1 ) ) )  =  ( ( n  +  1 )  _C  k ) )
3736adantlr 469 . . . . . . 7  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  (
k  -  1 ) ) )  =  ( ( n  +  1 )  _C  k ) )
38 oveq2 5850 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
n  _C  m )  =  ( n  _C  k ) )
3938eleq1d 2235 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( n  _C  m
)  e.  NN0  <->  ( n  _C  k )  e.  NN0 ) )
4039rspccva 2829 . . . . . . . . 9  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( n  _C  k
)  e.  NN0 )
41 peano2zm 9229 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
42 oveq2 5850 . . . . . . . . . . . 12  |-  ( m  =  ( k  - 
1 )  ->  (
n  _C  m )  =  ( n  _C  ( k  -  1 ) ) )
4342eleq1d 2235 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
( n  _C  m
)  e.  NN0  <->  ( n  _C  ( k  -  1 ) )  e.  NN0 ) )
4443rspccva 2829 . . . . . . . . . 10  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( n  _C  ( k  -  1 ) )  e.  NN0 )
4541, 44sylan2 284 . . . . . . . . 9  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( n  _C  (
k  -  1 ) )  e.  NN0 )
4640, 45nn0addcld 9171 . . . . . . . 8  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  ( k  -  1 ) ) )  e.  NN0 )
4746adantll 468 . . . . . . 7  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  (
k  -  1 ) ) )  e.  NN0 )
4837, 47eqeltrrd 2244 . . . . . 6  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  +  1 )  _C  k )  e.  NN0 )
4948ralrimiva 2539 . . . . 5  |-  ( ( n  e.  NN0  /\  A. m  e.  ZZ  (
n  _C  m )  e.  NN0 )  ->  A. k  e.  ZZ  ( ( n  + 
1 )  _C  k
)  e.  NN0 )
5049ex 114 . . . 4  |-  ( n  e.  NN0  ->  ( A. m  e.  ZZ  (
n  _C  m )  e.  NN0  ->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
5135, 50syl5bi 151 . . 3  |-  ( n  e.  NN0  ->  ( A. k  e.  ZZ  (
n  _C  k )  e.  NN0  ->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
523, 6, 9, 12, 32, 51nn0ind 9305 . 2  |-  ( N  e.  NN0  ->  A. k  e.  ZZ  ( N  _C  k )  e.  NN0 )
53 oveq2 5850 . . . 4  |-  ( k  =  K  ->  ( N  _C  k )  =  ( N  _C  K
) )
5453eleq1d 2235 . . 3  |-  ( k  =  K  ->  (
( N  _C  k
)  e.  NN0  <->  ( N  _C  K )  e.  NN0 ) )
5554rspccva 2829 . 2  |-  ( ( A. k  e.  ZZ  ( N  _C  k
)  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )
5652, 55sylan 281 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444  (class class class)co 5842   0cc0 7753   1c1 7754    + caddc 7756    - cmin 8069   NN0cn0 9114   ZZcz 9191   ...cfz 9944    _C cbc 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-seqfrec 10381  df-fac 10639  df-bc 10661
This theorem is referenced by:  bccl2  10681  bcn2m1  10682  bcn2p1  10683  binomlem  11424  bcxmas  11430
  Copyright terms: Public domain W3C validator