ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccl Unicode version

Theorem bccl 10747
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
bccl  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )

Proof of Theorem bccl
Dummy variables  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5882 . . . . 5  |-  ( m  =  0  ->  (
m  _C  k )  =  ( 0  _C  k ) )
21eleq1d 2246 . . . 4  |-  ( m  =  0  ->  (
( m  _C  k
)  e.  NN0  <->  ( 0  _C  k )  e. 
NN0 ) )
32ralbidv 2477 . . 3  |-  ( m  =  0  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( 0  _C  k )  e.  NN0 ) )
4 oveq1 5882 . . . . 5  |-  ( m  =  n  ->  (
m  _C  k )  =  ( n  _C  k ) )
54eleq1d 2246 . . . 4  |-  ( m  =  n  ->  (
( m  _C  k
)  e.  NN0  <->  ( n  _C  k )  e.  NN0 ) )
65ralbidv 2477 . . 3  |-  ( m  =  n  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( n  _C  k )  e.  NN0 ) )
7 oveq1 5882 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
m  _C  k )  =  ( ( n  +  1 )  _C  k ) )
87eleq1d 2246 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( m  _C  k
)  e.  NN0  <->  ( (
n  +  1 )  _C  k )  e. 
NN0 ) )
98ralbidv 2477 . . 3  |-  ( m  =  ( n  + 
1 )  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
10 oveq1 5882 . . . . 5  |-  ( m  =  N  ->  (
m  _C  k )  =  ( N  _C  k ) )
1110eleq1d 2246 . . . 4  |-  ( m  =  N  ->  (
( m  _C  k
)  e.  NN0  <->  ( N  _C  k )  e.  NN0 ) )
1211ralbidv 2477 . . 3  |-  ( m  =  N  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( N  _C  k )  e.  NN0 ) )
13 elfz1eq 10035 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
1413adantl 277 . . . . . 6  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  k  =  0 )
15 oveq2 5883 . . . . . . 7  |-  ( k  =  0  ->  (
0  _C  k )  =  ( 0  _C  0 ) )
16 0nn0 9191 . . . . . . . . 9  |-  0  e.  NN0
17 bcn0 10735 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
1816, 17ax-mp 5 . . . . . . . 8  |-  ( 0  _C  0 )  =  1
19 1nn0 9192 . . . . . . . 8  |-  1  e.  NN0
2018, 19eqeltri 2250 . . . . . . 7  |-  ( 0  _C  0 )  e. 
NN0
2115, 20eqeltrdi 2268 . . . . . 6  |-  ( k  =  0  ->  (
0  _C  k )  e.  NN0 )
2214, 21syl 14 . . . . 5  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  e.  NN0 )
23 bcval3 10731 . . . . . . 7  |-  ( ( 0  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
2416, 23mp3an1 1324 . . . . . 6  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
2524, 16eqeltrdi 2268 . . . . 5  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  e.  NN0 )
26 0zd 9265 . . . . . 6  |-  ( k  e.  ZZ  ->  0  e.  ZZ )
27 fzdcel 10040 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  0  e.  ZZ )  -> DECID  k  e.  (
0 ... 0 ) )
28 exmiddc 836 . . . . . . 7  |-  (DECID  k  e.  ( 0 ... 0
)  ->  ( k  e.  ( 0 ... 0
)  \/  -.  k  e.  ( 0 ... 0
) ) )
2927, 28syl 14 . . . . . 6  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  0  e.  ZZ )  ->  (
k  e.  ( 0 ... 0 )  \/ 
-.  k  e.  ( 0 ... 0 ) ) )
3026, 26, 29mpd3an23 1339 . . . . 5  |-  ( k  e.  ZZ  ->  (
k  e.  ( 0 ... 0 )  \/ 
-.  k  e.  ( 0 ... 0 ) ) )
3122, 25, 30mpjaodan 798 . . . 4  |-  ( k  e.  ZZ  ->  (
0  _C  k )  e.  NN0 )
3231rgen 2530 . . 3  |-  A. k  e.  ZZ  ( 0  _C  k )  e.  NN0
33 oveq2 5883 . . . . . 6  |-  ( k  =  m  ->  (
n  _C  k )  =  ( n  _C  m ) )
3433eleq1d 2246 . . . . 5  |-  ( k  =  m  ->  (
( n  _C  k
)  e.  NN0  <->  ( n  _C  m )  e.  NN0 ) )
3534cbvralv 2704 . . . 4  |-  ( A. k  e.  ZZ  (
n  _C  k )  e.  NN0  <->  A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )
36 bcpasc 10746 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  ( k  -  1 ) ) )  =  ( ( n  +  1 )  _C  k ) )
3736adantlr 477 . . . . . . 7  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  (
k  -  1 ) ) )  =  ( ( n  +  1 )  _C  k ) )
38 oveq2 5883 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
n  _C  m )  =  ( n  _C  k ) )
3938eleq1d 2246 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( n  _C  m
)  e.  NN0  <->  ( n  _C  k )  e.  NN0 ) )
4039rspccva 2841 . . . . . . . . 9  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( n  _C  k
)  e.  NN0 )
41 peano2zm 9291 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
42 oveq2 5883 . . . . . . . . . . . 12  |-  ( m  =  ( k  - 
1 )  ->  (
n  _C  m )  =  ( n  _C  ( k  -  1 ) ) )
4342eleq1d 2246 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
( n  _C  m
)  e.  NN0  <->  ( n  _C  ( k  -  1 ) )  e.  NN0 ) )
4443rspccva 2841 . . . . . . . . . 10  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( n  _C  ( k  -  1 ) )  e.  NN0 )
4541, 44sylan2 286 . . . . . . . . 9  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( n  _C  (
k  -  1 ) )  e.  NN0 )
4640, 45nn0addcld 9233 . . . . . . . 8  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  ( k  -  1 ) ) )  e.  NN0 )
4746adantll 476 . . . . . . 7  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  (
k  -  1 ) ) )  e.  NN0 )
4837, 47eqeltrrd 2255 . . . . . 6  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  +  1 )  _C  k )  e.  NN0 )
4948ralrimiva 2550 . . . . 5  |-  ( ( n  e.  NN0  /\  A. m  e.  ZZ  (
n  _C  m )  e.  NN0 )  ->  A. k  e.  ZZ  ( ( n  + 
1 )  _C  k
)  e.  NN0 )
5049ex 115 . . . 4  |-  ( n  e.  NN0  ->  ( A. m  e.  ZZ  (
n  _C  m )  e.  NN0  ->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
5135, 50biimtrid 152 . . 3  |-  ( n  e.  NN0  ->  ( A. k  e.  ZZ  (
n  _C  k )  e.  NN0  ->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
523, 6, 9, 12, 32, 51nn0ind 9367 . 2  |-  ( N  e.  NN0  ->  A. k  e.  ZZ  ( N  _C  k )  e.  NN0 )
53 oveq2 5883 . . . 4  |-  ( k  =  K  ->  ( N  _C  k )  =  ( N  _C  K
) )
5453eleq1d 2246 . . 3  |-  ( k  =  K  ->  (
( N  _C  k
)  e.  NN0  <->  ( N  _C  K )  e.  NN0 ) )
5554rspccva 2841 . 2  |-  ( ( A. k  e.  ZZ  ( N  _C  k
)  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )
5652, 55sylan 283 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455  (class class class)co 5875   0cc0 7811   1c1 7812    + caddc 7814    - cmin 8128   NN0cn0 9176   ZZcz 9253   ...cfz 10008    _C cbc 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-seqfrec 10446  df-fac 10706  df-bc 10728
This theorem is referenced by:  bccl2  10748  bcn2m1  10749  bcn2p1  10750  binomlem  11491  bcxmas  11497
  Copyright terms: Public domain W3C validator