| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bccl | Unicode version | ||
| Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| bccl | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1 5929 | 
. . . . 5
 | |
| 2 | 1 | eleq1d 2265 | 
. . . 4
 | 
| 3 | 2 | ralbidv 2497 | 
. . 3
 | 
| 4 | oveq1 5929 | 
. . . . 5
 | |
| 5 | 4 | eleq1d 2265 | 
. . . 4
 | 
| 6 | 5 | ralbidv 2497 | 
. . 3
 | 
| 7 | oveq1 5929 | 
. . . . 5
 | |
| 8 | 7 | eleq1d 2265 | 
. . . 4
 | 
| 9 | 8 | ralbidv 2497 | 
. . 3
 | 
| 10 | oveq1 5929 | 
. . . . 5
 | |
| 11 | 10 | eleq1d 2265 | 
. . . 4
 | 
| 12 | 11 | ralbidv 2497 | 
. . 3
 | 
| 13 | elfz1eq 10110 | 
. . . . . . 7
 | |
| 14 | 13 | adantl 277 | 
. . . . . 6
 | 
| 15 | oveq2 5930 | 
. . . . . . 7
 | |
| 16 | 0nn0 9264 | 
. . . . . . . . 9
 | |
| 17 | bcn0 10847 | 
. . . . . . . . 9
 | |
| 18 | 16, 17 | ax-mp 5 | 
. . . . . . . 8
 | 
| 19 | 1nn0 9265 | 
. . . . . . . 8
 | |
| 20 | 18, 19 | eqeltri 2269 | 
. . . . . . 7
 | 
| 21 | 15, 20 | eqeltrdi 2287 | 
. . . . . 6
 | 
| 22 | 14, 21 | syl 14 | 
. . . . 5
 | 
| 23 | bcval3 10843 | 
. . . . . . 7
 | |
| 24 | 16, 23 | mp3an1 1335 | 
. . . . . 6
 | 
| 25 | 24, 16 | eqeltrdi 2287 | 
. . . . 5
 | 
| 26 | 0zd 9338 | 
. . . . . 6
 | |
| 27 | fzdcel 10115 | 
. . . . . . 7
 | |
| 28 | exmiddc 837 | 
. . . . . . 7
 | |
| 29 | 27, 28 | syl 14 | 
. . . . . 6
 | 
| 30 | 26, 26, 29 | mpd3an23 1350 | 
. . . . 5
 | 
| 31 | 22, 25, 30 | mpjaodan 799 | 
. . . 4
 | 
| 32 | 31 | rgen 2550 | 
. . 3
 | 
| 33 | oveq2 5930 | 
. . . . . 6
 | |
| 34 | 33 | eleq1d 2265 | 
. . . . 5
 | 
| 35 | 34 | cbvralv 2729 | 
. . . 4
 | 
| 36 | bcpasc 10858 | 
. . . . . . . 8
 | |
| 37 | 36 | adantlr 477 | 
. . . . . . 7
 | 
| 38 | oveq2 5930 | 
. . . . . . . . . . 11
 | |
| 39 | 38 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 40 | 39 | rspccva 2867 | 
. . . . . . . . 9
 | 
| 41 | peano2zm 9364 | 
. . . . . . . . . 10
 | |
| 42 | oveq2 5930 | 
. . . . . . . . . . . 12
 | |
| 43 | 42 | eleq1d 2265 | 
. . . . . . . . . . 11
 | 
| 44 | 43 | rspccva 2867 | 
. . . . . . . . . 10
 | 
| 45 | 41, 44 | sylan2 286 | 
. . . . . . . . 9
 | 
| 46 | 40, 45 | nn0addcld 9306 | 
. . . . . . . 8
 | 
| 47 | 46 | adantll 476 | 
. . . . . . 7
 | 
| 48 | 37, 47 | eqeltrrd 2274 | 
. . . . . 6
 | 
| 49 | 48 | ralrimiva 2570 | 
. . . . 5
 | 
| 50 | 49 | ex 115 | 
. . . 4
 | 
| 51 | 35, 50 | biimtrid 152 | 
. . 3
 | 
| 52 | 3, 6, 9, 12, 32, 51 | nn0ind 9440 | 
. 2
 | 
| 53 | oveq2 5930 | 
. . . 4
 | |
| 54 | 53 | eleq1d 2265 | 
. . 3
 | 
| 55 | 54 | rspccva 2867 | 
. 2
 | 
| 56 | 52, 55 | sylan 283 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-seqfrec 10540 df-fac 10818 df-bc 10840 | 
| This theorem is referenced by: bccl2 10860 bcn2m1 10861 bcn2p1 10862 binomlem 11648 bcxmas 11654 | 
| Copyright terms: Public domain | W3C validator |