ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccl Unicode version

Theorem bccl 10175
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
bccl  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )

Proof of Theorem bccl
Dummy variables  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5659 . . . . 5  |-  ( m  =  0  ->  (
m  _C  k )  =  ( 0  _C  k ) )
21eleq1d 2156 . . . 4  |-  ( m  =  0  ->  (
( m  _C  k
)  e.  NN0  <->  ( 0  _C  k )  e. 
NN0 ) )
32ralbidv 2380 . . 3  |-  ( m  =  0  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( 0  _C  k )  e.  NN0 ) )
4 oveq1 5659 . . . . 5  |-  ( m  =  n  ->  (
m  _C  k )  =  ( n  _C  k ) )
54eleq1d 2156 . . . 4  |-  ( m  =  n  ->  (
( m  _C  k
)  e.  NN0  <->  ( n  _C  k )  e.  NN0 ) )
65ralbidv 2380 . . 3  |-  ( m  =  n  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( n  _C  k )  e.  NN0 ) )
7 oveq1 5659 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
m  _C  k )  =  ( ( n  +  1 )  _C  k ) )
87eleq1d 2156 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( m  _C  k
)  e.  NN0  <->  ( (
n  +  1 )  _C  k )  e. 
NN0 ) )
98ralbidv 2380 . . 3  |-  ( m  =  ( n  + 
1 )  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
10 oveq1 5659 . . . . 5  |-  ( m  =  N  ->  (
m  _C  k )  =  ( N  _C  k ) )
1110eleq1d 2156 . . . 4  |-  ( m  =  N  ->  (
( m  _C  k
)  e.  NN0  <->  ( N  _C  k )  e.  NN0 ) )
1211ralbidv 2380 . . 3  |-  ( m  =  N  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( N  _C  k )  e.  NN0 ) )
13 elfz1eq 9449 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
1413adantl 271 . . . . . 6  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  k  =  0 )
15 oveq2 5660 . . . . . . 7  |-  ( k  =  0  ->  (
0  _C  k )  =  ( 0  _C  0 ) )
16 0nn0 8688 . . . . . . . . 9  |-  0  e.  NN0
17 bcn0 10163 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
1816, 17ax-mp 7 . . . . . . . 8  |-  ( 0  _C  0 )  =  1
19 1nn0 8689 . . . . . . . 8  |-  1  e.  NN0
2018, 19eqeltri 2160 . . . . . . 7  |-  ( 0  _C  0 )  e. 
NN0
2115, 20syl6eqel 2178 . . . . . 6  |-  ( k  =  0  ->  (
0  _C  k )  e.  NN0 )
2214, 21syl 14 . . . . 5  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  e.  NN0 )
23 bcval3 10159 . . . . . . 7  |-  ( ( 0  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
2416, 23mp3an1 1260 . . . . . 6  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
2524, 16syl6eqel 2178 . . . . 5  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  e.  NN0 )
26 0zd 8762 . . . . . 6  |-  ( k  e.  ZZ  ->  0  e.  ZZ )
27 fzdcel 9454 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  0  e.  ZZ )  -> DECID  k  e.  (
0 ... 0 ) )
28 exmiddc 782 . . . . . . 7  |-  (DECID  k  e.  ( 0 ... 0
)  ->  ( k  e.  ( 0 ... 0
)  \/  -.  k  e.  ( 0 ... 0
) ) )
2927, 28syl 14 . . . . . 6  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  0  e.  ZZ )  ->  (
k  e.  ( 0 ... 0 )  \/ 
-.  k  e.  ( 0 ... 0 ) ) )
3026, 26, 29mpd3an23 1275 . . . . 5  |-  ( k  e.  ZZ  ->  (
k  e.  ( 0 ... 0 )  \/ 
-.  k  e.  ( 0 ... 0 ) ) )
3122, 25, 30mpjaodan 747 . . . 4  |-  ( k  e.  ZZ  ->  (
0  _C  k )  e.  NN0 )
3231rgen 2428 . . 3  |-  A. k  e.  ZZ  ( 0  _C  k )  e.  NN0
33 oveq2 5660 . . . . . 6  |-  ( k  =  m  ->  (
n  _C  k )  =  ( n  _C  m ) )
3433eleq1d 2156 . . . . 5  |-  ( k  =  m  ->  (
( n  _C  k
)  e.  NN0  <->  ( n  _C  m )  e.  NN0 ) )
3534cbvralv 2590 . . . 4  |-  ( A. k  e.  ZZ  (
n  _C  k )  e.  NN0  <->  A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )
36 bcpasc 10174 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  ( k  -  1 ) ) )  =  ( ( n  +  1 )  _C  k ) )
3736adantlr 461 . . . . . . 7  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  (
k  -  1 ) ) )  =  ( ( n  +  1 )  _C  k ) )
38 oveq2 5660 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
n  _C  m )  =  ( n  _C  k ) )
3938eleq1d 2156 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( n  _C  m
)  e.  NN0  <->  ( n  _C  k )  e.  NN0 ) )
4039rspccva 2721 . . . . . . . . 9  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( n  _C  k
)  e.  NN0 )
41 peano2zm 8788 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
42 oveq2 5660 . . . . . . . . . . . 12  |-  ( m  =  ( k  - 
1 )  ->  (
n  _C  m )  =  ( n  _C  ( k  -  1 ) ) )
4342eleq1d 2156 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
( n  _C  m
)  e.  NN0  <->  ( n  _C  ( k  -  1 ) )  e.  NN0 ) )
4443rspccva 2721 . . . . . . . . . 10  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( n  _C  ( k  -  1 ) )  e.  NN0 )
4541, 44sylan2 280 . . . . . . . . 9  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( n  _C  (
k  -  1 ) )  e.  NN0 )
4640, 45nn0addcld 8730 . . . . . . . 8  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  ( k  -  1 ) ) )  e.  NN0 )
4746adantll 460 . . . . . . 7  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  (
k  -  1 ) ) )  e.  NN0 )
4837, 47eqeltrrd 2165 . . . . . 6  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  +  1 )  _C  k )  e.  NN0 )
4948ralrimiva 2446 . . . . 5  |-  ( ( n  e.  NN0  /\  A. m  e.  ZZ  (
n  _C  m )  e.  NN0 )  ->  A. k  e.  ZZ  ( ( n  + 
1 )  _C  k
)  e.  NN0 )
5049ex 113 . . . 4  |-  ( n  e.  NN0  ->  ( A. m  e.  ZZ  (
n  _C  m )  e.  NN0  ->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
5135, 50syl5bi 150 . . 3  |-  ( n  e.  NN0  ->  ( A. k  e.  ZZ  (
n  _C  k )  e.  NN0  ->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
523, 6, 9, 12, 32, 51nn0ind 8860 . 2  |-  ( N  e.  NN0  ->  A. k  e.  ZZ  ( N  _C  k )  e.  NN0 )
53 oveq2 5660 . . . 4  |-  ( k  =  K  ->  ( N  _C  k )  =  ( N  _C  K
) )
5453eleq1d 2156 . . 3  |-  ( k  =  K  ->  (
( N  _C  k
)  e.  NN0  <->  ( N  _C  K )  e.  NN0 ) )
5554rspccva 2721 . 2  |-  ( ( A. k  e.  ZZ  ( N  _C  k
)  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )
5652, 55sylan 277 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664  DECID wdc 780    /\ w3a 924    = wceq 1289    e. wcel 1438   A.wral 2359  (class class class)co 5652   0cc0 7350   1c1 7351    + caddc 7353    - cmin 7653   NN0cn0 8673   ZZcz 8750   ...cfz 9424    _C cbc 10155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-q 9105  df-rp 9135  df-fz 9425  df-iseq 9853  df-fac 10134  df-bc 10156
This theorem is referenced by:  bccl2  10176  bcn2m1  10177  bcn2p1  10178  binomlem  10877  bcxmas  10883
  Copyright terms: Public domain W3C validator