ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bccl Unicode version

Theorem bccl 10701
Description: A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
bccl  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )

Proof of Theorem bccl
Dummy variables  k  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5860 . . . . 5  |-  ( m  =  0  ->  (
m  _C  k )  =  ( 0  _C  k ) )
21eleq1d 2239 . . . 4  |-  ( m  =  0  ->  (
( m  _C  k
)  e.  NN0  <->  ( 0  _C  k )  e. 
NN0 ) )
32ralbidv 2470 . . 3  |-  ( m  =  0  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( 0  _C  k )  e.  NN0 ) )
4 oveq1 5860 . . . . 5  |-  ( m  =  n  ->  (
m  _C  k )  =  ( n  _C  k ) )
54eleq1d 2239 . . . 4  |-  ( m  =  n  ->  (
( m  _C  k
)  e.  NN0  <->  ( n  _C  k )  e.  NN0 ) )
65ralbidv 2470 . . 3  |-  ( m  =  n  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( n  _C  k )  e.  NN0 ) )
7 oveq1 5860 . . . . 5  |-  ( m  =  ( n  + 
1 )  ->  (
m  _C  k )  =  ( ( n  +  1 )  _C  k ) )
87eleq1d 2239 . . . 4  |-  ( m  =  ( n  + 
1 )  ->  (
( m  _C  k
)  e.  NN0  <->  ( (
n  +  1 )  _C  k )  e. 
NN0 ) )
98ralbidv 2470 . . 3  |-  ( m  =  ( n  + 
1 )  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
10 oveq1 5860 . . . . 5  |-  ( m  =  N  ->  (
m  _C  k )  =  ( N  _C  k ) )
1110eleq1d 2239 . . . 4  |-  ( m  =  N  ->  (
( m  _C  k
)  e.  NN0  <->  ( N  _C  k )  e.  NN0 ) )
1211ralbidv 2470 . . 3  |-  ( m  =  N  ->  ( A. k  e.  ZZ  ( m  _C  k
)  e.  NN0  <->  A. k  e.  ZZ  ( N  _C  k )  e.  NN0 ) )
13 elfz1eq 9991 . . . . . . 7  |-  ( k  e.  ( 0 ... 0 )  ->  k  =  0 )
1413adantl 275 . . . . . 6  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  k  =  0 )
15 oveq2 5861 . . . . . . 7  |-  ( k  =  0  ->  (
0  _C  k )  =  ( 0  _C  0 ) )
16 0nn0 9150 . . . . . . . . 9  |-  0  e.  NN0
17 bcn0 10689 . . . . . . . . 9  |-  ( 0  e.  NN0  ->  ( 0  _C  0 )  =  1 )
1816, 17ax-mp 5 . . . . . . . 8  |-  ( 0  _C  0 )  =  1
19 1nn0 9151 . . . . . . . 8  |-  1  e.  NN0
2018, 19eqeltri 2243 . . . . . . 7  |-  ( 0  _C  0 )  e. 
NN0
2115, 20eqeltrdi 2261 . . . . . 6  |-  ( k  =  0  ->  (
0  _C  k )  e.  NN0 )
2214, 21syl 14 . . . . 5  |-  ( ( k  e.  ZZ  /\  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  e.  NN0 )
23 bcval3 10685 . . . . . . 7  |-  ( ( 0  e.  NN0  /\  k  e.  ZZ  /\  -.  k  e.  ( 0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
2416, 23mp3an1 1319 . . . . . 6  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  =  0 )
2524, 16eqeltrdi 2261 . . . . 5  |-  ( ( k  e.  ZZ  /\  -.  k  e.  (
0 ... 0 ) )  ->  ( 0  _C  k )  e.  NN0 )
26 0zd 9224 . . . . . 6  |-  ( k  e.  ZZ  ->  0  e.  ZZ )
27 fzdcel 9996 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  0  e.  ZZ )  -> DECID  k  e.  (
0 ... 0 ) )
28 exmiddc 831 . . . . . . 7  |-  (DECID  k  e.  ( 0 ... 0
)  ->  ( k  e.  ( 0 ... 0
)  \/  -.  k  e.  ( 0 ... 0
) ) )
2927, 28syl 14 . . . . . 6  |-  ( ( k  e.  ZZ  /\  0  e.  ZZ  /\  0  e.  ZZ )  ->  (
k  e.  ( 0 ... 0 )  \/ 
-.  k  e.  ( 0 ... 0 ) ) )
3026, 26, 29mpd3an23 1334 . . . . 5  |-  ( k  e.  ZZ  ->  (
k  e.  ( 0 ... 0 )  \/ 
-.  k  e.  ( 0 ... 0 ) ) )
3122, 25, 30mpjaodan 793 . . . 4  |-  ( k  e.  ZZ  ->  (
0  _C  k )  e.  NN0 )
3231rgen 2523 . . 3  |-  A. k  e.  ZZ  ( 0  _C  k )  e.  NN0
33 oveq2 5861 . . . . . 6  |-  ( k  =  m  ->  (
n  _C  k )  =  ( n  _C  m ) )
3433eleq1d 2239 . . . . 5  |-  ( k  =  m  ->  (
( n  _C  k
)  e.  NN0  <->  ( n  _C  m )  e.  NN0 ) )
3534cbvralv 2696 . . . 4  |-  ( A. k  e.  ZZ  (
n  _C  k )  e.  NN0  <->  A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )
36 bcpasc 10700 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  ( k  -  1 ) ) )  =  ( ( n  +  1 )  _C  k ) )
3736adantlr 474 . . . . . . 7  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  (
k  -  1 ) ) )  =  ( ( n  +  1 )  _C  k ) )
38 oveq2 5861 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
n  _C  m )  =  ( n  _C  k ) )
3938eleq1d 2239 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( n  _C  m
)  e.  NN0  <->  ( n  _C  k )  e.  NN0 ) )
4039rspccva 2833 . . . . . . . . 9  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( n  _C  k
)  e.  NN0 )
41 peano2zm 9250 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
42 oveq2 5861 . . . . . . . . . . . 12  |-  ( m  =  ( k  - 
1 )  ->  (
n  _C  m )  =  ( n  _C  ( k  -  1 ) ) )
4342eleq1d 2239 . . . . . . . . . . 11  |-  ( m  =  ( k  - 
1 )  ->  (
( n  _C  m
)  e.  NN0  <->  ( n  _C  ( k  -  1 ) )  e.  NN0 ) )
4443rspccva 2833 . . . . . . . . . 10  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  ( k  -  1 )  e.  ZZ )  ->  ( n  _C  ( k  -  1 ) )  e.  NN0 )
4541, 44sylan2 284 . . . . . . . . 9  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( n  _C  (
k  -  1 ) )  e.  NN0 )
4640, 45nn0addcld 9192 . . . . . . . 8  |-  ( ( A. m  e.  ZZ  ( n  _C  m
)  e.  NN0  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  ( k  -  1 ) ) )  e.  NN0 )
4746adantll 473 . . . . . . 7  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  _C  k )  +  ( n  _C  (
k  -  1 ) ) )  e.  NN0 )
4837, 47eqeltrrd 2248 . . . . . 6  |-  ( ( ( n  e.  NN0  /\ 
A. m  e.  ZZ  ( n  _C  m
)  e.  NN0 )  /\  k  e.  ZZ )  ->  ( ( n  +  1 )  _C  k )  e.  NN0 )
4948ralrimiva 2543 . . . . 5  |-  ( ( n  e.  NN0  /\  A. m  e.  ZZ  (
n  _C  m )  e.  NN0 )  ->  A. k  e.  ZZ  ( ( n  + 
1 )  _C  k
)  e.  NN0 )
5049ex 114 . . . 4  |-  ( n  e.  NN0  ->  ( A. m  e.  ZZ  (
n  _C  m )  e.  NN0  ->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
5135, 50syl5bi 151 . . 3  |-  ( n  e.  NN0  ->  ( A. k  e.  ZZ  (
n  _C  k )  e.  NN0  ->  A. k  e.  ZZ  ( ( n  +  1 )  _C  k )  e.  NN0 ) )
523, 6, 9, 12, 32, 51nn0ind 9326 . 2  |-  ( N  e.  NN0  ->  A. k  e.  ZZ  ( N  _C  k )  e.  NN0 )
53 oveq2 5861 . . . 4  |-  ( k  =  K  ->  ( N  _C  k )  =  ( N  _C  K
) )
5453eleq1d 2239 . . 3  |-  ( k  =  K  ->  (
( N  _C  k
)  e.  NN0  <->  ( N  _C  K )  e.  NN0 ) )
5554rspccva 2833 . 2  |-  ( ( A. k  e.  ZZ  ( N  _C  k
)  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )
5652, 55sylan 281 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K
)  e.  NN0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703  DECID wdc 829    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448  (class class class)co 5853   0cc0 7774   1c1 7775    + caddc 7777    - cmin 8090   NN0cn0 9135   ZZcz 9212   ...cfz 9965    _C cbc 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-seqfrec 10402  df-fac 10660  df-bc 10682
This theorem is referenced by:  bccl2  10702  bcn2m1  10703  bcn2p1  10704  binomlem  11446  bcxmas  11452
  Copyright terms: Public domain W3C validator