ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpd3an23 GIF version

Theorem mpd3an23 1354
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
Hypotheses
Ref Expression
mpd3an23.1 (𝜑𝜓)
mpd3an23.2 (𝜑𝜒)
mpd3an23.3 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mpd3an23 (𝜑𝜃)

Proof of Theorem mpd3an23
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 mpd3an23.1 . 2 (𝜑𝜓)
3 mpd3an23.2 . 2 (𝜑𝜒)
4 mpd3an23.3 . 2 ((𝜑𝜓𝜒) → 𝜃)
51, 2, 3, 4syl3anc 1252 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 985
This theorem is referenced by:  exp0  10732  bcpasc  10955  bccl  10956  pw2dvds  12654  qnumdencoprm  12681  qeqnumdivden  12682  grpinvid  13559  qus0  13738  ghmid  13752  mgpvalg  13852  mgpex  13854  opprex  14002  unitgrpid  14047  qusmul2  14458  psrbaglesuppg  14601  dvef  15366  2lgs  15748
  Copyright terms: Public domain W3C validator