ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpd3an23 GIF version

Theorem mpd3an23 1350
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
Hypotheses
Ref Expression
mpd3an23.1 (𝜑𝜓)
mpd3an23.2 (𝜑𝜒)
mpd3an23.3 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mpd3an23 (𝜑𝜃)

Proof of Theorem mpd3an23
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 mpd3an23.1 . 2 (𝜑𝜓)
3 mpd3an23.2 . 2 (𝜑𝜒)
4 mpd3an23.3 . 2 ((𝜑𝜓𝜒) → 𝜃)
51, 2, 3, 4syl3anc 1249 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  exp0  10617  bcpasc  10840  bccl  10841  pw2dvds  12307  qnumdencoprm  12334  qeqnumdivden  12335  grpinvid  13135  qus0  13308  ghmid  13322  mgpvalg  13422  mgpex  13424  opprex  13572  unitgrpid  13617  qusmul2  14028  psrbaglesuppg  14169  dvef  14906  2lgs  15261
  Copyright terms: Public domain W3C validator