| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpd3an23 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
| mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
| mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 2, 3, 4 | syl3anc 1271 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: exp0 10773 bcpasc 10996 bccl 10997 pw2dvds 12696 qnumdencoprm 12723 qeqnumdivden 12724 grpinvid 13601 qus0 13780 ghmid 13794 mgpvalg 13894 mgpex 13896 opprex 14044 unitgrpid 14090 qusmul2 14501 psrbaglesuppg 14644 dvef 15409 2lgs 15791 |
| Copyright terms: Public domain | W3C validator |