ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpd3an23 GIF version

Theorem mpd3an23 1373
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.)
Hypotheses
Ref Expression
mpd3an23.1 (𝜑𝜓)
mpd3an23.2 (𝜑𝜒)
mpd3an23.3 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
mpd3an23 (𝜑𝜃)

Proof of Theorem mpd3an23
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
2 mpd3an23.1 . 2 (𝜑𝜓)
3 mpd3an23.2 . 2 (𝜑𝜒)
4 mpd3an23.3 . 2 ((𝜑𝜓𝜒) → 𝜃)
51, 2, 3, 4syl3anc 1271 1 (𝜑𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  exp0  10773  bcpasc  10996  bccl  10997  pw2dvds  12696  qnumdencoprm  12723  qeqnumdivden  12724  grpinvid  13601  qus0  13780  ghmid  13794  mgpvalg  13894  mgpex  13896  opprex  14044  unitgrpid  14090  qusmul2  14501  psrbaglesuppg  14644  dvef  15409  2lgs  15791
  Copyright terms: Public domain W3C validator