| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpex | Unicode version | ||
| Description: Existence of the
multiplication group. If |
| Ref | Expression |
|---|---|
| mgpbas.1 |
|
| Ref | Expression |
|---|---|
| mgpex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.1 |
. . 3
| |
| 2 | eqid 2207 |
. . 3
| |
| 3 | 1, 2 | mgpvalg 13800 |
. 2
|
| 4 | plusgslid 13059 |
. . . . 5
| |
| 5 | 4 | simpri 113 |
. . . 4
|
| 6 | 5 | a1i 9 |
. . 3
|
| 7 | mulrslid 13079 |
. . . 4
| |
| 8 | 7 | slotex 12974 |
. . 3
|
| 9 | setsex 12979 |
. . 3
| |
| 10 | 6, 8, 9 | mpd3an23 1352 |
. 2
|
| 11 | 3, 10 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-sets 12954 df-plusg 13037 df-mulr 13038 df-mgp 13798 |
| This theorem is referenced by: mgpress 13808 isrngd 13830 rngpropd 13832 ringidss 13906 oppr1g 13959 unitgrpbasd 13992 unitgrp 13993 unitlinv 14003 unitrinv 14004 rngidpropdg 14023 rhmunitinv 14055 rnglidlmmgm 14373 expghmap 14484 |
| Copyright terms: Public domain | W3C validator |