Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mposnif | Unicode version |
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.) |
Ref | Expression |
---|---|
mposnif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 3607 | . . . 4 | |
2 | 1 | adantr 276 | . . 3 |
3 | 2 | iftrued 3539 | . 2 |
4 | 3 | mpoeq3ia 5930 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wcel 2146 cif 3532 csn 3589 cmpo 5867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-if 3533 df-sn 3595 df-oprab 5869 df-mpo 5870 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |