ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mposnif Unicode version

Theorem mposnif 5936
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mposnif  |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )

Proof of Theorem mposnif
StepHypRef Expression
1 elsni 3594 . . . 4  |-  ( i  e.  { X }  ->  i  =  X )
21adantr 274 . . 3  |-  ( ( i  e.  { X }  /\  j  e.  B
)  ->  i  =  X )
32iftrued 3527 . 2  |-  ( ( i  e.  { X }  /\  j  e.  B
)  ->  if (
i  =  X ,  C ,  D )  =  C )
43mpoeq3ia 5907 1  |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   ifcif 3520   {csn 3576    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-if 3521  df-sn 3582  df-oprab 5846  df-mpo 5847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator