ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mposnif Unicode version

Theorem mposnif 6012
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mposnif  |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )

Proof of Theorem mposnif
StepHypRef Expression
1 elsni 3636 . . . 4  |-  ( i  e.  { X }  ->  i  =  X )
21adantr 276 . . 3  |-  ( ( i  e.  { X }  /\  j  e.  B
)  ->  i  =  X )
32iftrued 3564 . 2  |-  ( ( i  e.  { X }  /\  j  e.  B
)  ->  if (
i  =  X ,  C ,  D )  =  C )
43mpoeq3ia 5983 1  |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2164   ifcif 3557   {csn 3618    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-if 3558  df-sn 3624  df-oprab 5922  df-mpo 5923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator