ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mposnif Unicode version

Theorem mposnif 6052
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mposnif  |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )

Proof of Theorem mposnif
StepHypRef Expression
1 elsni 3656 . . . 4  |-  ( i  e.  { X }  ->  i  =  X )
21adantr 276 . . 3  |-  ( ( i  e.  { X }  /\  j  e.  B
)  ->  i  =  X )
32iftrued 3582 . 2  |-  ( ( i  e.  { X }  /\  j  e.  B
)  ->  if (
i  =  X ,  C ,  D )  =  C )
43mpoeq3ia 6023 1  |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2177   ifcif 3575   {csn 3638    e. cmpo 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-if 3576  df-sn 3644  df-oprab 5961  df-mpo 5962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator