ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mposnif Unicode version

Theorem mposnif 6038
Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
Assertion
Ref Expression
mposnif  |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )

Proof of Theorem mposnif
StepHypRef Expression
1 elsni 3650 . . . 4  |-  ( i  e.  { X }  ->  i  =  X )
21adantr 276 . . 3  |-  ( ( i  e.  { X }  /\  j  e.  B
)  ->  i  =  X )
32iftrued 3577 . 2  |-  ( ( i  e.  { X }  /\  j  e.  B
)  ->  if (
i  =  X ,  C ,  D )  =  C )
43mpoeq3ia 6009 1  |-  ( i  e.  { X } ,  j  e.  B  |->  if ( i  =  X ,  C ,  D ) )  =  ( i  e.  { X } ,  j  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175   ifcif 3570   {csn 3632    e. cmpo 5945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-if 3571  df-sn 3638  df-oprab 5947  df-mpo 5948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator